Skip to main content
Log in

A Thermodynamic Approach to Selecting Alternative Gate Dielectrics

  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

As a first step in the identification of suitable alternative gate dielectrics for metal oxide semiconductor field-effect transistors (MOSFETs), we have used tabulated thermodynamic data to comprehensively assess the thermodynamic stability of binary oxides and nitrides in contact with silicon at temperatures from 300 K to 1600 K. Sufficient data exist to conclude that the vast majority of binary oxides and nitrides are thermodynamically unstable in contact with silicon. The dielectrics that remain are candidate materials for alternative gate dielectrics. Of these remaining candidates, the oxides have a significantly higher dielectric constant (ĸ) than the nitrides. We then extend this thermodynamic approach to multicomponent oxides comprising the candidate binary oxides. The result is a relatively small number of silicon-compatible gate dielectric materials with ĸ values substantially greater than that of SiO2 and optical bandgaps ≥ eV.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. International Technology Roadmap for Semiconductors: 1999 (Semiconductor Industry Association, San Jose, CA, 1999) p. 105.

  2. National Technology Roadmap for Semiconductors (Semiconductor Industry Association, San Jose, CA, 1997) p. 72.

  3. A.I. Kingon, J.-P. Maria, and S.K. Streiffer, Nature 406 (2000) p. 1032.

    CAS  Google Scholar 

  4. G.D. Wilk, R.M. Wallace, and J.M. Anthony, J. Appl. Phys. 89 (2001) p. 5243.

    CAS  Google Scholar 

  5. I. Barin, Thermochemical Data of Pure Substances, 3rd ed., Vols. I and II (VCH, Weinheim, 1995).

  6. D.G. Schlom, C.A. Billman, J.H. Haeni, J. Lettieri, P.H. Tan, R.R.M. Held, S. Völk, and K.J. Hubbard, “High-ĸ Candidates for Use as the Gate Dielectric in Silicon MOSFETs,” Appl. Phys. A in press.

  7. S. Zaima, T. Furuta, Y. Yasuda, and M. Iida, J. Electrochem. Soc. 137 (1990) p. 1297.

    CAS  Google Scholar 

  8. G.B. Alers, D.J. Werder, Y. Chabal, H.C. Lu, E.P. Gusev, E. Garfunkel, T. Gustafsson, and R.S. Urdahl, Appl. Phys. Lett. 73 (1998) p. 1517.

    CAS  Google Scholar 

  9. A.Y. Mao, K.A. Son, J.M. White, D.L. Kwong, D.A. Roberts, and R.N. Vrtis, J. Vac. Sci. Technol., A 17 (1999) p. 954.

    CAS  Google Scholar 

  10. D.C. Gilmer, D.G. Colombo, C.J. Taylor, J. Roberts, G. Haugstad, S.A. Campbell, H.-S. Kim, G.D. Wilk, M.A. Gribelyuk, and W.L. Gladfelter, Chem. Vap. Dep. 4 (1998) p. 9.

    CAS  Google Scholar 

  11. W.B. Pennebaker, IBM J. Res. Dev. 13 (11) (1969) p. 686.

    CAS  Google Scholar 

  12. J.K.G. Panitz and C.C. Hu, J. Vac. Sci. Technol. 16 (1979) p. 315.

    CAS  Google Scholar 

  13. V.S. Dharmadhikari and W.W. Grannemann, J. Vac. Sci. Technol., A 1 (1983) p. 483.

    CAS  Google Scholar 

  14. S. Matsubara, T. Sakuma, S. Yamamichi, H. Yamaguchi, and Y. Miyasaka, in Ferroelectric Thin Films, edited by E.R. Myers and A.I. Kingon (Mater. Res. Soc. Symp. Proc. 200, Pittsburgh, 1990) p. 243

  15. H. Nagata, T. Tsukahara, S. Gonda, M. Yoshimoto, and H. Koinuma, Jpn. J. Appl. Phys., Part 2: Lett. 30 (1991) p. L1136.

    CAS  Google Scholar 

  16. J. Kwo, M. Hong, A.R. Kortan, K.L. Queeney, Y.J. Chabal, R.L. Opila Jr, D.A. Muller, S.N.G. Chu, B.J. Sapjeta, T.S. Lay, J.P. Mannaerts, T. Boone, H.W. Krautter, J.J. Krajewski, A.M. Sergent, and J.M. Rosamilia, J. Appl. Phys. 89 (2001) p. 3920.

    CAS  Google Scholar 

  17. D.J. Werder, G.B. Alers, Y. Chabal, H.C. Lu, E.P. Gusev, E. Garfunkel, T. Gustafsson, and R.S. Urdahl (private communication). The Ta2O5/Si interface shown is from the sample in its as-grown state. With subsequent processing steps (in oxygen), the SiOx layer became thicker (see Figure 1 in Ref. 8).

  18. J.-P. Maria, W.H. Schulte, D. Wicaksana, B. Busch, A.I. Kingon, and E. Garfunkel, “Decomposition of Ultra-Thin ZrO2 Films on Si,” Appl. Phys. Lett. (2001) submitted for publication.

    Google Scholar 

  19. T.S. Jeon, J.M. White, and D.L. Kwong, Appl. Phys. Lett. 78 (2001) p. 368.

    CAS  Google Scholar 

  20. R. Beyers, J. Appl. Phys. 56 (1984) p. 147

    CAS  Google Scholar 

  21. K.J. Hubbard and D.G. Schlom, J. Mater. Res. 11 (1996) p. 2757.

    CAS  Google Scholar 

  22. P.H. Tan and D.G. Schlom, “Thermody-namic Stability of Binary Nitrides in Contact with Silicon,” J. Mater. Res. (2002) submitted for publication.

    Google Scholar 

  23. H. Zhong, G. Heuss, Y.-S. Suh, V. Misra, and S.-N. Hang, J. Electron. Mater. 30 (2001) p. 1493.

    CAS  Google Scholar 

  24. J.P. Liu, P. Zaumseil, E. Bugiel, and H.J. Osten, Appl. Phys. Lett. 79 (2001) p. 671.

    CAS  Google Scholar 

  25. D.R. Lide, ed., CRC Handbook of Chemistry and Physics: A Ready-Reference Book of Chemical and Physical Data, 77th ed. (CRC Press, Boca Raton, FL, 1996).

    Google Scholar 

  26. H. Behner, J. Wecker, Th. Matthée, and K. Samwer, Surf. Interface Anal. 18 (1992) p. 685

    CAS  Google Scholar 

  27. D.B. Fenner, A.M. Viano, D.K. Fork, G.A.N. Connell, J.B. Boyce, F.A. Ponce, and J.C. Tramontana, J. Appl. Phys. 69 (1991) p. 2176.

    CAS  Google Scholar 

  28. S.H. Rou, T.M. Graettinger, A.F. Chow, C.N. Soble II, D.J. Lichtenwalner, O. Auciello, and A.I. Kingon, in Ferroelectric Thin Films II, edited by A.I. Kingon, E.R. Myers, and B. Tuttle (Mater. Res. Soc. Symp. Proc. 243, Pittsburgh, 1992) p. 81.

  29. R.D. Shannon, J. Appl. Phys. 73 (1993) p. 348.

    CAS  Google Scholar 

  30. R.A. McKee, F.J. Walker, and M.F. Chisholm, Phys. Rev. Lett. 81 (1998) p. 3014.

    CAS  Google Scholar 

  31. V.V. Il’chenko, G.V. Kuznetsov, V.I. Strikha, and A.I. Tsyganova, Mikroelektron. 27 (1998) p. 340 [Russ. Microelectron. 27 (1998) p. 291]

    Google Scholar 

  32. J.F. Nye, Physical Properties of Crystals: Their Representation by Tensors and Matrices (Oxford University Press, Oxford, 1957, 1985).

    Google Scholar 

  33. NIST Crystal Data 1997, CD-ROM database (International Center for Diffraction Data, Newton Square, PA, 1997).

  34. S.-G. Lim, S. Kriventsov, T.N. Jackson, J.H. Haeni, D.G. Schlom, A.M. Balbashov, R. Uecker, P. Reich, J.L. Freeouf, and G. Lucovsky, J. Appl. Phys. (2002) in press.

    Google Scholar 

  35. J.H. Haeni, S. Trolier-McKinstry, S-G. Lim, T.N. Jackson, M.M. Rosario, J.L. Freeouf, R. Uecker, P. Reiche, and D.G. Schlom, “Dielectric Tensor and Optical Bandgap Measurement of Single Crystals of the Alternative Gate Oxide Candidates ReScO3,” J. Appl. Phys. (2002) submitted for publication.

    Google Scholar 

  36. Adapted from plot made by D.C. Gilmer (private communication).

  37. T.H. DiStefano and D.E. Eastman, Solid State Commun. 9 (1971) p. 2259.

    CAS  Google Scholar 

  38. G.A. Brown, W.C. Robinette Jr, and H.G. Carlson, J. Electrochem. Soc. 115 (1968) p. 948.

    CAS  Google Scholar 

  39. A.M. Goodman, Appl. Phys. Lett. 13 (1968) p. 275.

    CAS  Google Scholar 

  40. R.H. French, J. Am. Ceram. Soc. 73 (1990) p. 477.

    CAS  Google Scholar 

  41. D.M. Roessler and W.C. Walker, Phys. Rev. 159 (1967) p. 733.

    CAS  Google Scholar 

  42. M.L. Bortz, R.H. French, D.J. Jones, R.V. Kasowski, and F.S. Ohuchi, Phys. Scr. 41 (1990) p. 537.

    CAS  Google Scholar 

  43. V.N. Abramov and A.I. Kuznetsov, Fiz. Tverd. Tela (Leningrad) 20 (1978) p. 689 [Sov. Phys. Solid State 20 (1978) p. 399].

    CAS  Google Scholar 

  44. O. Madelung, M. Schulz, and H. Weiss, eds., Landolt-Börnstein: Numerical Data and Functional Relationships in Science and Technology, New Series, Group III, Vol. 17b (Springer, Berlin, 1982) pp. 22, 27.

    Google Scholar 

  45. S. Zollner (private communication).

  46. H.H. Tippins, J. Phys. Chem. Solids 27 (1966) p. 1069.

    CAS  Google Scholar 

  47. S.S. Derbeneva and S.S. Batsanov, Dokl. Chem. Akad. Nauk SSSR 175 (1967) p. 1062 [Sov. Chem. Dokl. 175 (1967) p. 710].

    CAS  Google Scholar 

  48. A.F. Andreeva and I.Y. Gil’man, Zh. Prikl. Spektrosk. 28 (1978) p. 895 [J. Appl. Spectrosc. (USSR) 28 (1978) p. 610].

    CAS  Google Scholar 

  49. G.V. Samsonov, ed., The Oxide Handbook, 2nd ed. (IFI/Plenum Publishers, New York, 1982) p. 213.

    Google Scholar 

  50. R.H. French, S.J. Glass, F.S. Ohuchi, Y.-N. Xu, and W.Y. Ching, Phys. Rev. B 49 (1994) p. 5133.

    CAS  Google Scholar 

  51. G.A. Samara, J. Appl. Phys. 68 (1990) p. 4214.

    CAS  Google Scholar 

  52. K.L. Ovanesyan, A.G. Petrosyan, G.O. Shirinyan, C. Pedrini, and L. Zhang, Opt. Mater. 10 (1998) p. 291.

    CAS  Google Scholar 

  53. Data from N. Sata, M. Ishigame, and S. Shin, Solid State Ionics 86-88 (1996) p. 629, extrapolated to α = 103 cm−1 after R.W. Collins and K. Vedam, in Encyclopedia of Applied Physics, Vol. 12, edited by G.L. Trigg (VCH Publishers, New York, 1995) p. 285.

    CAS  Google Scholar 

  54. N. Sata, M. Ishigame, and S. Shin, Solid State Ionics 86-88 (1996) p. 629.

    CAS  Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schlom, D.G., Haeni, J.H. A Thermodynamic Approach to Selecting Alternative Gate Dielectrics. MRS Bulletin 27, 198–204 (2002). https://doi.org/10.1557/mrs2002.71

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs2002.71

Keywords

Navigation