Skip to main content
Log in

Nanocomposite Hard Coatings for Wear Protection

  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

Nanocomposite thin films successfully promote hardness, oxidation resistance, improved wear behavior, and other properties relevant for wear-reducing coatings. Such coatings are composed of nanocrystalline grains of transition-metal nitrides or carbides surrounded by an amorphous hard matrix. The properties of nanocomposite coatings, especially hardness, are directly linked to nanostructure. The codeposition of the amorphous and nanocrystalline phases of different compositions results in different morphologies, which in turn affect the coating?s properties. A maximum hardness ranging from 30 GPa to reported values above 60 GPa has been observed for most nanocomposite coatings. To obtain enhanced hardness, the domain size of the nanocrystalline phase must be below 10 nm, while the thickness of the amorphous layer separating the nanocrystals must be maintained at only a few atomic bond lengths. The prime reason for the hardness enhancement is the absence of dislocation activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D.M. Teter, MRS Bull. 23 (1) (1998) p. 22.

    Article  CAS  Google Scholar 

  2. H. Holleck, J. Vac. Sci. Technol., A 4 (6) (1986) p. 2661.

    Article  CAS  Google Scholar 

  3. O. Knotek, M. Böhmer, and T. Leyendecker, J. Vac. Sci. Technol., A 4 (6) (1986) p. 2695.

    Article  CAS  Google Scholar 

  4. W.-D. Münz, J. Vac. Sci. Technol., A 4 (6) (1986) p. 2717.

    Article  Google Scholar 

  5. D. McIntyre, J.E. Greene, G. Håkansson, J.-E. Sundgren, and W.-D. Münz, J. Appl. Phys. 67 (3) (1990) p. 1542.

    Article  CAS  Google Scholar 

  6. V. Valvoda, Surf. Coat. Technol. 80 (1996) p. 61.

    Article  CAS  Google Scholar 

  7. J. Robertson, Mater. Sci. Eng., R 37 (2002) p. 129.

    Article  Google Scholar 

  8. J.S. Koehler, Phys. Rev. B 2 (2) (1970) p. 547.

    Article  Google Scholar 

  9. M. Shinn, L. Hultman, and S.A. Barnett, J. Mater. Res. 7 (4) (1992) p. 901.

    Article  CAS  Google Scholar 

  10. S. Barnett and A. Madan, Phys. World (January 1998) p. 45.

    Google Scholar 

  11. M. Setoyama, A. Nakayama, M. Tanaka, N. Kitagawa, and T. Nomura, Surf. Coat. Technol. 86–87 (1996) p. 225.

    Article  Google Scholar 

  12. H. Holleck and V. Schier, Surf. Coat Technol. 76 (1–3) (1995) p. 328.

    Article  Google Scholar 

  13. X. Chu and S.A. Barnett, J. Appl. Phys. 77 (9) (1995) p. 4403.

    Article  CAS  Google Scholar 

  14. W.D. Sproul, Science 273 (1996) p. 889.

    Article  CAS  Google Scholar 

  15. T. Hirai and S. Hayashi, J. Mater. Sci. 17 (1982) p. 1320.

    Article  CAS  Google Scholar 

  16. S. Li, Y. Shi, and H. Peng, Plasma Chem. Plasma Process. 21 (3) (1992) p. 287.

    Google Scholar 

  17. S. Veprřek, S. Reiprich, and L. Shizhi, Appl. Phys. Lett. 66 (20) (1995) p. 2640.

    Article  Google Scholar 

  18. P. Nesladek and S. Veprřek, Phys. Status Solidi A 177 (2000) p. 53.

    Article  Google Scholar 

  19. S. Veprřek, M. Haussmann, and S. Reiprich, J. Vac. Sci. Technol., A 14 (1996) p. 46.

    Article  Google Scholar 

  20. M. Diserens, J. Patscheider, and F. Lévy, Surf. Coat. Technol. 108–109 (1998) p. 241.

    Article  Google Scholar 

  21. F. Vaz, L. Rebouta, S. Ramos, A. Cavaleiro, M.F. da Silva, and J.C. Soares, Surf. Coat. Technol. 100–101 (1–3) (1998) p. 110.

    Article  Google Scholar 

  22. J.L. He, C.K. Chen, and M.H. Hon, Mater. Chem. Phys. 44 (1996) p. 9.

    Article  CAS  Google Scholar 

  23. F. Vaz, L. Rebouta, P. Goudeau, T. Girardeau, J. Pacaud, J.-P. Riviere, and A. Traverse, Surf. Coat. Technol. 146–147 (2001) p. 274.

    Article  Google Scholar 

  24. S. Sambasivan and W.T. Petuskey, J. Mater. Res. 9 (9) (1994) p. 2362.

    Article  CAS  Google Scholar 

  25. W.-D. Münz, F.J.M. Hauzer, D. Schulze, and B. Buil, Surf. Coat. Technol. 49 (1991) p. 161.

    Article  Google Scholar 

  26. J. Patscheider, T. Zehnder, and M. Diserens, Surf. Coat. Technol. 146–147 (2001) p. 201.

    Article  Google Scholar 

  27. M. Diserens, J. Patscheider, and F. Lévy, Surf. Coat. Technol. 120–121 (1999) p. 158.

    Article  Google Scholar 

  28. X. Sun, J.S. Reid, E. Kolawa, and M.-A. Nicolet, J. Appl. Phys. 81 (2) (1997) p. 656.

    Article  CAS  Google Scholar 

  29. Y.-H. Chen, K.W. Lee, W.-A. Chiou, Y.-W. Chung, and L.M. Keer, Surf. Coat. Technol. 146–147 (2001) p. 209.

    Article  Google Scholar 

  30. M. Diserens, dissertation no. 21290, EPFL, Lausanne, 2000.

    Google Scholar 

  31. T. Zehnder and J. Patscheider, Surf. Coat. Technol. 133–134 (2000) p. 138.

    Article  Google Scholar 

  32. A.A. Voevodin and J.S. Zabinski, J. Mater. Sci. 33 (1998) p. 319.

    Article  CAS  Google Scholar 

  33. A. Leonhardt, H. Liepack, and K. Bartsch, Surf. Coat. Technol. 133–134 (2000) p. 186.

    Article  Google Scholar 

  34. A.A. Voevodin, C. Rebholz, J.M. Schneider, P. Stevenson, and A. Matthews, Surf. Coat. Technol. 73 (1995) p. 185.

    Article  CAS  Google Scholar 

  35. A.A. Voevodin, M.A. Capano, A.J. Safriet, M.S. Donley, and J.S. Zabinski, Appl. Phys. Lett. 69 (1996) p. 188.

    Article  CAS  Google Scholar 

  36. J. Musil, Surf. Coat. Technol. 125 (2000) p. 322.

    Article  CAS  Google Scholar 

  37. J. Musil, P. Zeman, H. Hruby, and P. Mayrhofer, Surf. Coat. Technol. 121 (1999) p. 179.

    Article  Google Scholar 

  38. J. Musil, P. Karvankova, and J. Kasl, Surf. Coat. Technol. 139 (2001) p. 101.

    Article  CAS  Google Scholar 

  39. P. Karvankova, H.-D. Männling, C. Eggs, and S. Veprřek, Surf. Coat. Technol. 146–147 (2001) p. 280.

    Article  Google Scholar 

  40. K. Bartsch, A. Leonhardt, U. Langer, and K. Künanz, Surf. Coat. Technol. 94–95 (1–3) (1997) p. 168.

    Article  Google Scholar 

  41. P.J. Martin and A. Bendavid, Thin Solid Films 394 (2001) p. 1.

    Article  CAS  Google Scholar 

  42. P.J. Martin and A. Bendavid, Surf. Coat. Technol. 163–164 (2002) p. 245.

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Patscheider, J. Nanocomposite Hard Coatings for Wear Protection. MRS Bulletin 28, 180–183 (2003). https://doi.org/10.1557/mrs2003.59

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs2003.59

Keywords

Navigation