Skip to main content
Log in

In Situ X-Ray Tomography Measurements of Deformation in Cellular Solids

  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

The use of microtomography to study the structure and especially the deformation modes of cellular solids is reviewed in this article. First, the technique is described in detail. Examples illustrating the power of the coupling of in situ deformation with three-dimensional (3D) imaging, drawn from the recent literature and the authors’ own work, are then given. The most detailed example is the study of the deformation modes of several samples made of different aluminum foams. Four kinds of closed-cell foams were investigated, corresponding to different routes available today for their manufacture. The initial macrostructure was quantified using the 3D images combined with 3D granulometry, allowing retrieval of pertinent information about the cell size and the wall and strut thicknesses. The global behavior exhibited by the foams during the in situ compression experiments was shown to vary from one brand of material to another. Some of these variations can be explained by differences in the known microstructure and the measured macrostructure of the samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A.H. Benouali and L. Froyen, in Cellular Metals and Metal Foaming Technology, edited by J. Banhart, M. Ashby, and N. Fleck (MIT-Verlag, Bremen, 2001) p. 269.

  2. O.B. Olurin, M. Arnold, C. Körner, and R.F. Singer, Mater. Sci. Eng., A 328 (2002) p. 334.

    Article  Google Scholar 

  3. A. Elmoutaouakkil, L. Salvo, E. Maire, and G. Peix, Adv. Eng. Mater. 4 (2002) p. 803.

    Article  CAS  Google Scholar 

  4. H.P. Degisher, A. Kottar, and F. Foroughi, in X-Ray Tomography in Material Science, edited by J. Baruchel, J.-Y. Buffière, E. Maire, P. Merle, and G. Peix (Hermes Science Publications, Paris, 2000) p. 165.

  5. L. Helfen, T. Baumbach, H. Stanzick, J. Banhart, A. Elmoutaouakkil, P. Cloetens, and K. Schladitz, Adv. Eng. Mater. 4 (2002) p. 808.

    Article  CAS  Google Scholar 

  6. L. Babout, E. Maire, J.-Y. Buffière, and R. Fougères, Acta Mater. 49 (2001) p. 2055.

    Article  CAS  Google Scholar 

  7. H. Bart-Smith, A.F. Bastawros, D.R. Mumm, A.G. Evans, D.J. Sypeck, and H.N.G Wadley, Acta Mater. 46 (10) (1998) p. 3582.

    Article  Google Scholar 

  8. J.A. Elliott, A.H. Windle, J.R. Hobdel, G. Eeckhaut, R.J. Oldman, W. Ludwig, E. Boller, P. Cloetens, and J. Baruchel, J. Mater. Sci. 37 (2002) p. 1547.

    Article  CAS  Google Scholar 

  9. R. Müller, T. Bösch, D. Jarak, M. Stauber, A. Nazarian, M. Tantillo, and S. Boyd, in Proc. SPIE Developments in X-Ray Tomography III, Vol. 4503, edited by U. Bonse (SPIE—The International Society for Optical Engineering, Bellingham, WA, 2001) p. 189.

    Google Scholar 

  10. R. Müller, S.C. Gerber, and W.C. Hayes, Technol. Health Care 6 (1998) p. 433.

    Article  Google Scholar 

  11. P.M. Mummery, P. Anderson, G.R. Davis, B. Derby, and J.C. Elliott, Scripta Metall. Mater. 29 (1993) p. 1457.

    Article  Google Scholar 

  12. J.-Y. Buffière, E. Maire, P. Cloetens, G. Lormand, and R. Fougères, Acta Mater. 47 (5) (1999) p. 1613.

    Article  Google Scholar 

  13. E. Maire, F. Wattebled, J.-Y. Buffière, and G. Peix, in Proc. Euromat 9 Conf., Vol. 5, edited by Clyne T. W. and F. Simancik (WILEY-VCH, München, 2000) p. 68.

    Google Scholar 

  14. E. Maire, J.-Y. Buffière, L. Salvo, J.J. Blandin, W. Ludwig, and J.M. Létang, Adv. Eng. Mater. 3 (8) (2001) p. 539.

    Article  CAS  Google Scholar 

  15. L.A. Feldkamp, L.C. Davis, and J.W. Kress. J. Opt. Soc. Am. 1 (6) (1984) p. 612.

    Article  Google Scholar 

  16. E. Cendre, P. Duvauchelle, G. Peix, J.Y. Buffière, and D. Babot, in Proc. First World Congress on Industrial Process Tomography (Umist University, U.K., 1999) p. 362.

    Google Scholar 

  17. W. Pistoia, B. Van Rietbergen, E.M. Lochmüller, C.A. Lill, F. Eckstein, and P. Rüegsegger, Bone 30 (6) (2002) p. 842.

    Article  CAS  Google Scholar 

  18. E. Jasiuniene, J. Goebbels, B. Illerhaus, P. Lowe, and A. Kottar, in Cellular Metals and Metal Foaming Technology, edited by J. Banhart, M. Ashby, and N. Fleck (MIT-Verlag, Bremen, 2001) p. 251.

  19. G. Gioux, T.M. McCormack, and L.J. Gibson Int. J. Mech. Sci. 42 (2000) p. 1097.

    Article  Google Scholar 

  20. B.K. Bay, T.S. Smith, D.P. Fyhrie, and M. Saad, Exp. Mech. 39 (1999) p. 218.

    Article  Google Scholar 

  21. E. Maire, in Handbook of Cellular Metals, Production, Processing, Applications, Part 4.2, edited by H.P. Degischer and B. Kriszt (WILEY-VCH, Einheim, 2002) p. 145.

  22. J. Baumeister, J. Banhart, and M. Weber, Powder Met. Int. 25 (1993) p. 182.

    Google Scholar 

  23. P. Asholt, in Metal Foams and Porous Metal Structures, edited by J. Banhart, M.F. Ashby, and N.A. Fleck (MIT-Verlag, Bremen, 1999) p. 133.

  24. T. Miyoshi, M. Itoh, S. Akiyama, and A. Kitahara, in Metal Foams and Porous Metal Structures, edited by J. Banhart, M.F. Ashby, and N.A. Fleck (MIT-Verlag, Bremen, 1999) p. 125.

  25. V. Gergely and B. Clyne Adv. Eng. Mater. 2 (2000) p. 175.

    Article  CAS  Google Scholar 

  26. J.L. Chermant and M. Coster, Précis d’analyse d’image, Edition du CNRS, Paris (1985).

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maire, E., Elmoutaouakkil, A., Fazekas, A. et al. In Situ X-Ray Tomography Measurements of Deformation in Cellular Solids. MRS Bulletin 28, 284–289 (2003). https://doi.org/10.1557/mrs2003.82

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs2003.82

Keywords

Navigation