Skip to main content
Log in

Nanocrystalline- Matrix Ceramic Composites for Improved Fracture Toughness

  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

This article focuses on nanocrystalline-matrix ceramic composites specifically designed for applications requiring improved fracture toughness. While the models and theory of toughening mechanisms for microcrystalline composites are well developed, the same cannot be said for their nanocrystalline counterparts. The difficulty in producing fully consolidated ceramic composites that retain a nanocrystalline structure is the main hurdle to thorough investigations in this area. Thus, much of the research on so-called nanocomposites has been on materials with microcrystalline matrices and nanometric second phases. In this article, we present the general principles of toughness mechanisms in microcrystalline ceramic composites, and then extend these ideas to consider how they should apply to ceramics with nanocrystalline matrices. While work in this area is still quite limited, we review current research focused on the production and testing of composites with nanocrystalline matrices and second phases, and we recap the results of some promising fracture toughness reports.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M.J. Mayo, D.C. Hague, and D.J. Chen, Mater. Sci. Eng., A 166 (1993) p. 145.

    Google Scholar 

  2. Y. Fang, D.K. Agrawal, D.M. Roy, and R. Roy, Mater. Lett. 23 (1995) p. 147.

    CAS  Google Scholar 

  3. J. Lu, K.-I. Ueda, H. Yagi, T. Yanagitani, Y. Akiyama, and A.A. Kaminskii, J. Alloys Compd. 341 (2002) p. 220.

    CAS  Google Scholar 

  4. M. Sternitzke, J. Eur. Ceram. Soc. 17 (1997) p. 1061.

    CAS  Google Scholar 

  5. H. Awaji, S.-M. Choi, and E. Yagi, Mech. Mater. 34 (2002) p. 411.

    Google Scholar 

  6. W.H. Tuan, M.C. Lin, and H.H. Wu, Ceram. Int. 21 (1995) p. 221.

    CAS  Google Scholar 

  7. G. Vekinis, E. Sofianopoulos, and W.J. Tomlinson, Acta Mater. 45 (1997) p. 4651.

    CAS  Google Scholar 

  8. E.D. Rodeghiero, O.K. Tse, J. Chisaki, and E.P. Giannelis, Mater. Sci. Eng., A 195 (1995) p. 151.

    Google Scholar 

  9. A.K. Dutta, N. Narasauah, A.B. Chattopadhyaya, and K.K. Ray, Ceram. Int. 27 (2001) p. 407.

    CAS  Google Scholar 

  10. P.M. Kelly and L.R. Francis Rose, Prog. Mater. Sci. 47 (2002) p. 463.

    CAS  Google Scholar 

  11. S. Bhaduri and S.B. Bhaduri, Nanostruct. Mater. 8 (1997) p. 755.

    CAS  Google Scholar 

  12. A.G. Evans, J. Am. Ceram. Soc. 73 (1990) p. 187.

    CAS  Google Scholar 

  13. I.E. Reimanis, Mater. Sci. Eng. A 237 (1997) p. 159.

    Google Scholar 

  14. M. Ruhle, A.G. Evans, R.M. McMeeking, P.G. Charalambides, and J.W. Hutchinson, Acta Metall. 35 (1987) p. 2701.

    Google Scholar 

  15. W.-H. Gu, K.T. Faber, and R.W. Steinbrech, Acta Metall. Mater. 40 (1992) p. 3121.

    CAS  Google Scholar 

  16. K. Niihara, A. Nakahira, and T. Sekino, in Nanophase and Nanocomposite Materials, edited by S. Komarneni, J.C. Parker, and G.J. Thomas (Mater. Res. Soc. Symp. Proc. 286, Pittsburgh, PA, 1993) p. 405.

    CAS  Google Scholar 

  17. G.-D. Zhan, J. Kuntz, J. Wan, J. Garay, and A.K. Mukherjee, Mater. Sci. Eng. A 356 (2003) p. 443.

    Google Scholar 

  18. G.D. Zhan, J.D. Kuntz, J. Wan, J.E. Garay, and A.K. Mukherjee, J. Am. Ceram. Soc. 86 (2003) p. 200.

    CAS  Google Scholar 

  19. G.D. Zhan, J.D. Kuntz, J. Wan, and A.K. Mukherjee, Nat. Mater. 2 (2003) p. 38.

    Article  CAS  Google Scholar 

  20. J.D. Kuntz, J. Wan, G.D. Zhan, and A.K. Mukherjee, in Proc. TMS Annu. Meet. on Ultrafine Grauned Materials II, edited by Y.T. Zhu, T.G. Langdon, R.S. Mishra, S.L. Semiatin, M.J. Sharan, and T.C. Lowe (The Minerals, Metals and Materials Society, Warrendale, PA, 2002) p. 225.

  21. K. Niihara, A. Nakahira, G. Sasaki, and M. Hirabayashi, in Proc. MRS Int. Meet. Adv. Mater., Vol. 4, edited by M. Doyama, S. Somiya, and R.P.H. Chang (Materials Research Society, Pittsburgh, PA, 1989) p. 129.

  22. K. Niihara and A. Nakahira, in Proc. Satellite Symp. 2, Adv. Structural Inorganic Composites, 7th Int. Meet. on Modern Ceramics Technologies, edited by P. Vincenzini (Elsevier, Amsterdam, 1991) p. 637.

  23. I. Levin, W.D. Kaplan, D.G. Brandon, and A.A. Layyous, J. Am. Ceram. Soc. 78 (1995) p. 254.

    CAS  Google Scholar 

  24. T. Ohji, J. Young-Keun, C. Yong-Ho, and K. Niihara, J. Am. Ceram. Soc. 81 (1998) p. 1453.

    CAS  Google Scholar 

  25. H. Tan and W. Yang, Mech. Mater. 30 (1998) p. 111.

    Google Scholar 

  26. Y. Ji and J.A. Yeomans, J. Eur. Ceram. Soc. 22 (2002) p. 1927.

    CAS  Google Scholar 

  27. S.T. Oh, T. Sekino, and K. Niihara, J. Eur. Ceram. Soc. 18 (1998) p. 31.

    CAS  Google Scholar 

  28. T. Sekino, T. Nakajima, S. Ueda, and K. Niihara, J. Am. Ceram. Soc. 80 (1997) p. 1139.

    CAS  Google Scholar 

  29. T. Sekino and K. Niihara, Nanostruct. Mater. 6 (1995) p. 663.

    Google Scholar 

  30. R.S. Mishra, C.E. Lesher, and A.K. Mukherjee, in Materials Science Forum, Vols. 225–227, Part 1 (Trans Tech, Zurich, Switzerland, 1996) p. 617.

    Google Scholar 

  31. R.S. Mishra, C.E. Lesher, and A.K. Mukherjee, J. Am. Ceram. Soc. 79 (1996) p. 2989.

    CAS  Google Scholar 

  32. S.-C. Liao, Y.-J. Chen, B.H. Kear, and W.E. Mayo, Nanostruct. Mater. 10 (6) (1998) p. 1063.

    CAS  Google Scholar 

  33. J. Wan, M.J. Gasch, J.D. Kuntz, R. Mishra, and A.K. Mukherjee, in Structure and Mechanical Properties of Nanophase Materials: Theory and Computer Simulation vs. Experiment, edited by D. Farkas, H. Kung, M. Mayo, H. Van Swygenhoven, and J. Weertman (Mater. Res. Soc. Symp. Proc. 634, Warrendale, PA, 2001) p. B7.2.1.

  34. J. Wan, M.J. Gasch, and A.K. Mukherjee, J. Mater. Res. 15 (2000) p. 1657.

    CAS  Google Scholar 

  35. G.D. Zhan, J.D. Kuntz, J. Wan, J.E. Garay, and A.K. Mukherjee, in Ultrafine Grauned Materials II: Proc. TMS Annu. Meet., edited by Y.T. Zhu, T.G. Langdon, R.S. Mishra, S.L. Semiatin, M.J. Sharan, and T.C. Lowe (The Minerals Metals & Materials Society, Warrendale, PA, 2002) p. 219.

  36. G.D. Zhan, J.D. Kuntz, J. Wan, J.E. Garay, and A.K. Mukherjee, Scripta Mater. 47 (2002) p. 737.

    CAS  Google Scholar 

  37. M. Omori, Mater. Sci. Eng., A 287 (2000) p. 183.

    Google Scholar 

  38. H. Hahn, Nanostruct. Mater. 2 (1993) p. 251.

    CAS  Google Scholar 

  39. A. Pechenik, G.J. Piermarini, and S.C. Danforth, J. Am. Ceram. Soc. 75 (1992) p. 3283.

    CAS  Google Scholar 

  40. A. Pechenik, G.J. Piermarini, and S.C. Danforth, Nanostruct. Mater. 2 (1993) p. 479.

    CAS  Google Scholar 

  41. M.R. Gallas, B. Hockey, A. Pechenik, and G.J. Piermarini, J. Am. Ceram. Soc. 77 (1994) p. 2107.

    CAS  Google Scholar 

  42. D.E. Garcia, S. Schicker, J. Bruhn, R. Janssen, and N. Claussen, J. Am. Ceram. Soc. 81 (1998) p. 429.

    CAS  Google Scholar 

  43. A.N. Virkar and R.L.K. Matsumoto, J. Am. Ceram. Soc. 69 (1986) p. C224.

  44. R.W. Siegel, S.K. Chang, B.J. Ash, J. Stone, P.M. Ajayan, R.W. Doremus, and L.S. Schadler, Scripta Mater. 44 (2001) p. 2061.

    CAS  Google Scholar 

  45. E. Flahaut, A. Peigney, C. Laurent, C. Marliere, F. Chastel, and A. Rousset, Acta Mater. 48 (2000) p. 3803.

    CAS  Google Scholar 

  46. S. Maensiri and S.G. Roberts, J. Eur. Ceram. Soc. 22 (2002) p. 2945.

    CAS  Google Scholar 

  47. C.C. Anya, J. Mater. Sci. 34 (1999) p. 5557.

    CAS  Google Scholar 

  48. R.W. Davidge, R.J. Brook, F. Cambier, M. Poorteman, A. Leriche, D. O’Sullivan, S. Hampshire, and T. Kennedy, Br. Ceram. Trans. 96 (1997) p. 121.

    CAS  Google Scholar 

  49. W.Z. Zhu, J.H. Gag, and Z.S. Ding, J. Mater. Sci. 32 (1997) p. 537.

    CAS  Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kuntz, J.D., Zhan, GD. & Mukherjee, A.K. Nanocrystalline- Matrix Ceramic Composites for Improved Fracture Toughness. MRS Bulletin 29, 22–27 (2004). https://doi.org/10.1557/mrs2004.12

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs2004.12

Keywords

Navigation