Skip to main content
Log in

Hybrid Organic-Nanocrystal Solar Cells

  • Research/Researcher
  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

Recent results have demonstrated that hybrid photovoltaic cells based on a blend of inorganic nanocrystals and polymers possess significant potential for low-cost, scalable solar power conversion. Colloidal semiconductor nanocrystals, like polymers, are solution processable and chemically synthesized, but possess the advantageous properties of inorganic semiconductors such as a broad spectral absorption range and high carrier mobilities. Significant advances in hybrid solar cells have followed the development of elongated nanocrystal rods and branched nanocrystals, which enable more effective charge transport. The incorporation of these larger nanostructures into polymers has required optimization of blend morphology using solvent mixtures. Future advances will rely on new nanocrystals, such as cadmium telluride tetrapods, that have the potential to enhance light absorption and further improve charge transport. Gains can also be made by incorporating application-specific organic components, including electroactive surfactants which control the physical and electronic interactions between nanocrystals and polymer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Yu and A.J. Heeger, J. Appl. Phys. 78 (1995) p. 4510.

    Article  CAS  Google Scholar 

  2. J.J.M. Halls, C.A. Walsh, N.C. Greenham, E.A. Marseglia, R.H. Friend, S.C. Moratti, and A.B. Holmes, Nature 376 (1995) p. 498.

    Article  CAS  Google Scholar 

  3. G. Yu, J. Gao, J.C. Hummelen, F. Wudl, and A.J. Heeger, Science 270 (1995) p. 1789.

    Article  CAS  Google Scholar 

  4. C.W. Tang, Appl. Phys. Lett. 48 (1986) p. 183.

    Article  CAS  Google Scholar 

  5. P. Peumans, S. Uchida, and S.R. Forrest, Nature 425 (2003) p. 158.

    Article  CAS  Google Scholar 

  6. F. Padinger, R.S. Rittberger, and N. Sariciftci, Adv. Funct. Mater. 13 (2003) p. 85.

    Article  CAS  Google Scholar 

  7. A.P. Alivisatos, Science 271 (1996) p. 933.

    Article  CAS  Google Scholar 

  8. C.B. Murray, D.J. Norris, and M.G. Bawendi, J. Am. Chem. Soc. 115 (1993) p. 8706.

    Article  CAS  Google Scholar 

  9. X. Peng, L. Manna, W. Yang, J. Wickham, A. Kadavanich, and A.P. Alivisatos, Nature 404 (2000) p. 59.

    Article  CAS  Google Scholar 

  10. L.E. Manna, E.C. Scher, and A.P. Alivisatos, J. Am. Chem. Soc. 122 (2000) p. 12700.

    Article  CAS  Google Scholar 

  11. M. Bawendi, M.L. Steigerwald, and L.E. Brus, Annu. Rev. Phys. Chem. 41 (1990) p. 477.

    Article  CAS  Google Scholar 

  12. L. Li, J. Hu, W. Yang, and A.P. Alivisatos, Nana Lett. 1 (2001) p. 349.

    Article  CAS  Google Scholar 

  13. W.W. Yu, L. Qu, W. Guo, and X. Peng, Chem. Mater. 15 (2003) p. 2854.

    Article  CAS  Google Scholar 

  14. M.A. Green, Prog. Photovoltaics 9 (2001) p. 137.

    Article  CAS  Google Scholar 

  15. N.C. Greenham, X. Peng, and A.P. Alivisatos, Phys. Rev. B 54 (1996) p. 17628.

    Article  CAS  Google Scholar 

  16. D.S. Ginger and N.C. Greenham, Synth. Met. 101 (1999) p. 425.

    Article  CAS  Google Scholar 

  17. W.U. Huynh, X. Peng, and A.P. Alivisatos, Adv. Mater. 11 (1999) p. 923.

    Article  CAS  Google Scholar 

  18. A.C. Arias, J.D. Maclienzie, R. Stevenson, J.J.M. Halis, M. Inbasekaran, E.P. Woo, D. Richards, and R.H. Friend, Macromolecules 34 (2001) p. 6005.

    Article  CAS  Google Scholar 

  19. W.U. Huynh, J.J. Dittmer, W.C. Libby G.L. Whiting, and A.P. Alivisatos, Adv. Funct. Mater. 13 (2003) p. 73.

    Article  CAS  Google Scholar 

  20. Y. Cui, Z. Zhong, W.U. Wang, and C.M. Lieber, Nana Lett. 3 (2003) p. 149.

    Article  CAS  Google Scholar 

  21. D.S. Ginger and N.C. Greenham, Synth. Met. 124 (2001) p. 117.

    Article  CAS  Google Scholar 

  22. W.U. Huynh, J.J. Dittmer, and A.P. Alivisatos, Science 295 (2002) p. 2425.

    Article  CAS  Google Scholar 

  23. B.E. Sun, E. Marx, and N.C. Greenham, Nana Lett. 3 (2003) p. 961.

    Article  CAS  Google Scholar 

  24. L. Manna, D.J. Miliiron, A. Meisel, E.C. Scher, and A.P. Alivisatos, Nature Mater. 2 (2003) p. 382.

    Article  CAS  Google Scholar 

  25. E. Arici, N.S. Sariciftci, and D. Meissner, Adv. Funct. Mater. 13 (2003) p. 165.

    Article  CAS  Google Scholar 

  26. D.J. Milliron, A.P. Alivisatos, C. Pitois, C. Edder, and J.M.J. Frechet, Adv. Mater. 15 (2003) p. 58.

    Article  CAS  Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Milliron, D.J., Gur, M. & Paul Alivisatos, A. Hybrid Organic-Nanocrystal Solar Cells. MRS Bulletin 30, 41–44 (2005). https://doi.org/10.1557/mrs2005.8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs2005.8

Keywords

Navigation