Skip to main content
Log in

Complex Oxide Materials for Potential Thermoelectric Applications

  • Technical Feature
  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

Layered CoO2 materials are excellent candidates for potential thermoelectric applications. Their single crystals show good p-type thermoelectric properties at temperatures higher than 800K in air.Recently, the mechanism of thermoelectric properties was clarified through a discussion of electronic and crystallographic structure. In order to fabricate thermoelectric modules possessing good power-generation properties, thermoelectric materials and metallic electrodes must be connected with low contact resistance and high mechanical strength.It has been found that good junctions can be formed using Ag paste including p- and n-type oxide powders.The role of spin entropy contributions to thermopower will be presented, in connection with strong electron correlation and triangular lattices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. I. Terasaki, Y. Sasago, and K. Uchinokura, Phys. Rev. B 56 (1997) p. R12685.

    Google Scholar 

  2. R. Funahashi, I. Matsubara, H. Ikuta, T. Takeuchi, U. Mizutani, and S. Sodeoka, Jpn. J. Appl. Phys. Pt. 2 39 (2000) p. L1127.

    Google Scholar 

  3. A.C. Masset, C. Michel, A. Maignan, M. Hervieu, O. Toulemonde, F. Studer, B. Raveau, and J. Hejtmanek, Phys. Rev. B 62 (2000) p. 166.

    Google Scholar 

  4. Y. Miyazaki, K. Kudo, M. Akoshima, Y. Ono, Y. Koike, and T. Kajitani, Jpn. J. Appl. Phys. Pt. 2 39 (2000) p. L531.

    Google Scholar 

  5. A. Satake, H. Tanaka, T. Ohkawa, T. Fujii, and I. Terasaki, J. Appl. Phys. 96 (2004) p. 931.

    Google Scholar 

  6. M. Shikano and R. Funahashi, Appl. Phys. Lett. 82 (2003) p. 1851.

    Google Scholar 

  7. I. Matsubara, R. Funahashi, T. Takeuchi, S. Sodeoka, T. Shimizu, and K. Ueno, Appl. Phys. Lett. 78 (2001) p. 3627.

    Google Scholar 

  8. W. Shin, N. Murayama, K. Ikeda, and S. Sago, J. Power Sources 103 (2001) p. 80.

    Google Scholar 

  9. C. Fouassier, G. Matejka, J. Reau, and P.J. Hagenmuller, J. Solid State Chem. 6 (1973) p. 532.

    Google Scholar 

  10. Y. Ono, R. Ishikawa, Y. Miyazaki, Y. Ishii, Y. Morii, and T. Kajitani, J. Solid State Chem. 166 (2002) p. 177.

    Google Scholar 

  11. M. Mikami, M. Yoshimura, Y. Mori, T. Sasaki, R. Funahashi, and I. Matsubara, Jpn. J. Appl. Phys. Part 2 41 (2002) p. L777.

    Google Scholar 

  12. K. Takada, H. Sakurai, E. Takayama-Muromachi, F. Izumi, R.A. Dilanian, and T. Sasaki, Nature 422 (2003) p. 53.

    Google Scholar 

  13. M. von Jansen and R. Hoppe, Z. Anorg. Allg. Chem. 408 (1974) p. 104.

    Google Scholar 

  14. J.M. Tarascon, R. Ramesh, P. Barboux, M.S. Hedge, G.W. Hull, L.H. Greene, M. Giroud, Y. LePage, W.R. McKinnon, J.V. Waszczak, and L.F. Schneemeyer, Solid State Commun. 71 (1989) p. 663.

    Google Scholar 

  15. H. Leligny, D. Grebille, O. Pérez, A.-C. Masset, M. Hervieu, C. Michel, and B. Raveau, C.R. Acad. Sci. Paris t.2, Série IIc (1999) p. 409.

  16. T. Yamamoto, I. Tsukada, K. Uchinokura, M. Takagi, T. Tsubone, M. Ichihara, and K. Kobayashi, Jpn. J. Appl. Phys. Pt. 2 39 (2000) p. L747.

    Google Scholar 

  17. T. Fujii, I. Terasaki, T. Watanabe, and A. Matsuda, Jpn. J. Appl. Phys. Pt. 2 41 (2002) p. L783.

    Google Scholar 

  18. I. Terasaki, Frontiers in Magnetic Materials (2005) p. 327.

  19. T. Itoh and I. Terasaki, Jpn. J. Appl. Phys. Pt. 1 39 (2000) p. 6658.

    Google Scholar 

  20. I. Terasaki, Proc. 18th Int. Conf. Thermoelectrics (ICT’99) (IEEE, Piscataway, NJ, 1999) p. 569.

    Google Scholar 

  21. K. Takahata, Y. Iguchi, D. Tanaka, T. Itoh, and I. Terasaki, Phys. Rev. B 61 (2000) p. 12551.

    Google Scholar 

  22. G.A. Slack, CRC Handbook of Thermoelectrics (CRC Press, Boca Raton, FL, 1995) p. 407.

    Google Scholar 

  23. H. Masuda, T. Fujita, T. Miyashita, M. Soda, Y. Yasui, Y. Kobayashi, and M. Sato, J. Phys. Soc. Jpn. 72 (2003) p. 873.

    Google Scholar 

  24. S. Okada and I. Terasaki, Jpn. J. Appl. Phys. 44 (2005) p. 1834.

    Google Scholar 

  25. S. Okada, I. Terasaki, H. Okabe, and M. Matoba, J. Phys. Soc. Jpn. 74 (2005) p. 1525.

    Google Scholar 

  26. T. Okuda, K. Nakanishi, S. Miyasaka, and Y. Tokura, Phys. Rev. B 63 113104 (2001).

    Google Scholar 

  27. L.F. Matheiss, Phys. Rev. B 6 (1972) p. 4718.

    Google Scholar 

  28. H.P.R. Frederikse, W.S. Thurber, and W.R. Hosler, Phys. Rev. 134 (2A) (1964) p. A442.

    Google Scholar 

  29. S. Ohta, T. Nomura, H. Ohta, and K. Koumoto, J. Appl. Phys. 97 (2005) p. 34106.

    Google Scholar 

  30. S. Ohta, T. Nomura, H. Ohta, M. Hirano, H. Hosono, and K. Koumoto, Appl. Phys. Lett. 87 (2005) p. 92108.

    Google Scholar 

  31. S. Ohta, T. Nomura, H. Ohta, M. Hirano, H. Hosono, and K. Koumoto, in Extended Abstracts No. 1 of the 52nd Spring Meeting, Jpn. Soc. Appl. Phys. Related Soc. (2005) p. 254.

  32. F.J. DiSalvo, Science 285 (1999) p. 703.

    Google Scholar 

  33. H. Muta, K. Kurosaki, and S. Yamanaka, J. Alloys Compd. 350 (2003) p. 292.

    Google Scholar 

  34. H. Muta, K. Kurosaki, and S. Yamanaka, J. Alloys Compd. 368 (2004) p. 22.

    Google Scholar 

  35. S.N. Ruddlesden and P. Popper, Acta Crystallogr. 10 (1957) p. 38; S.N. Ruddlesden and P. Popper, Acta Crystallogr. 11 (1958) p. 54.

    Google Scholar 

  36. J.H. Haeni, C.D. Theis, D.G. Schlom, W. Tian, X.Q. Pan, H. Chang, I. Takeuchi, and X.-D. Xiang, Appl. Phys. Lett. 78 (2001) p. 3292.

    Google Scholar 

  37. K. Koumoto, S. Ohta, and H. Ohta, in Proc. 23rd Int. Conf. Thermoelectrics (IEEE, Piscataway, NJ, 2005).

    Google Scholar 

  38. W. Wunderlich, S. Ohta, H. Ohta, and K. Koumoto, in Proc. 24th Int. Conf. Thermoelectrics (IEEE, Piscataway, NJ, 2005) p. 237.

    Google Scholar 

  39. K. Kato, S. Ohta, H. Ohta, and K. Koumoto, in Abstracts of the 43rd Symp. on Basic Science of Ceramics (2005) p. 20.

  40. H. Szelagowski, I. Arvanitidis, and S. Seetharaman, J. Appl. Phys. 85 (1999) p. 1.

    Google Scholar 

  41. R. Funahashi, S. Urata, K. Mizuno, T. Kouuchi, and M. Mikami, Appl. Phys. Lett. 85 (2004) p. 1036.

    Google Scholar 

  42. R. Funahashi, T. Mihara, M. Mikami, S. Urata, and N. Ando, in Proc. 24th Int. Conf. Thermoelectrics (IEEE, Piscataway, NJ, 2005) p. 292.

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Koumoto, K., Terasaki, I. & Funahashi, R. Complex Oxide Materials for Potential Thermoelectric Applications. MRS Bulletin 31, 206–210 (2006). https://doi.org/10.1557/mrs2006.46

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs2006.46

Keywords

Navigation