Skip to main content
Log in

Aspects of Thin-Film Superlattice Thermoelectric Materials, Devices, and Applications

  • Technical Feature
  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

Superlattices consist of alternating thin layers of different materials stacked periodically.The lattice mismatch and electronic potential differences at the interfaces and resulting phononand electron interface scattering and band structure modifications can be exploited to reduce phonon heat conduction while maintaining or enhancing the electron transport.This article focuses on a range of materials used in superlattice form to improve the thermoelectric figure of merit.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Proc. 1st Natl. Thermogenic Cooler Workshop, edited by S.B. Horn (Center for Night Vision and Electro-Optics, Fort Belvoir, VA, 1992).

  2. D. Hicks and M.S. Dresselhaus, Phys. Rev. B 47 (1993) p. 12727.

    Google Scholar 

  3. R. Venkatasubramanian, E. Siivola, T. Colpitts, and B. O’Quinn, Nature 413 (2001) p. 597.

    Google Scholar 

  4. T.C. Harman, P. Taylor, M.P. Walsh, and B.E. LaForge, Science 297 (2002) p. 2229.

    Google Scholar 

  5. G. Chen, Semicond. Semimetals 71 (2001) p. 203.

    Google Scholar 

  6. R. Venkatasubramanian, Semicond. Semimetals 71 (2001) p. 175.

    Google Scholar 

  7. B. Moyzhes and V. Nemchinsky, Appl. Phys. Lett. 73 (1998) p. 1895.

    Google Scholar 

  8. A. Shakouri and J.E. Bowers, Appl. Phys. Lett. 71 (1997) p. 1234.

    Google Scholar 

  9. H. Beyer, A. Lambrecht, E. Wagner, G. Bauer, H. Böttner, and J. Nurnus, Physica E 13 (2002) p. 965.

    Google Scholar 

  10. S.M. Lee, D.G. Cahill, and R. Venkatasubramanian, Appl. Phys. Lett. 70 (1997) p. 2957.

    Google Scholar 

  11. T. Borca-Tasciuc, W.L. Liu, T. Zeng, D.W. Song, C.D. Moore, G. Chen, K.L. Wang, M.S. Goorsky, T. Radetic, R. Gronsky, T. Koga, and M.S. Dresselhaus, Superlattices Microstruct. 28 (2000) p. 119.

    Google Scholar 

  12. G.H. Zeng, A. Shakouri, C. La Bounty, G. Robinson, E. Croke, P. Abraham, X.F. Fan, H. Reese, and J.E. Bowers, Electron. Lett. 35 (1999) p. 2146.

    Google Scholar 

  13. S. Cho, Y. Kim, S.J. Youn, A. DiVenere, G.K.L. Wong, A.J. Freeman, J.B. Ketterson, L.J. Olafsen, I. Vurgaftman, J.R. Meyer, and C.A. Hoffman, Phys. Rev. B 64 235330 (2001).

    Google Scholar 

  14. M.S. Dresselhaus, Y.M. Lin, S.B. Cronin, O. Rabin, M.R. Black, G. Dresselhaus, and T. Koga, Semicond. Semimetals 71 (2001) p. 1.

    Google Scholar 

  15. J. Nurnus, H. Böttner, and A. Lambrecht, in Handbook of Thermoelectrics, edited by M. Rowe, Chapter 46 (CRC Press, Boca Raton, FL, 2005) p. 1.

    Google Scholar 

  16. D. Mahan, Semicond. Semimetals 71 (2001) p. 157.

    Google Scholar 

  17. M.S. Dresselhaus, G. Dresselhaus, X. Sun, Z. Zhang, S.B. Cronin, T. Koga, J.Y. Ying, and G. Chen, Microscale Thermophys. Eng. 3 (1999) p. 89.

    Google Scholar 

  18. G. Chen, M.S. Dresselhaus, J.-P. Fleurial, and T. Caillat, Int. Mater. Rev. 48 (2003) p. 45.

    Google Scholar 

  19. G. Chen and A. Shakouri, J. Heat Transfer 124 (2001) p. 242.

    Google Scholar 

  20. G. Springholz, A. Holzinger, H. Krenn, H. Clemens, G. Bauer, H. Böttner, P. Norton, and M. Maier, J. Cryst. Growth 113 (1991) p. 593.

    Google Scholar 

  21. A. Lambrecht, H. Böttner, M. Agne, R. Kurbel, A. Fach, B. Halford, U. Schiessl, and M. Tacke, Semicond. Sci. Technol. 8 (1993) p. 334.

    Google Scholar 

  22. R. Venkatasubramanian, T. Colpitts, B. O’Quinn, M. Lamvik, and N. El-Masry, Appl. Phys. Lett. 75 (1999) p. 1104.

    Google Scholar 

  23. J. Nurnus, H. Beyer, A. Lambrecht, and H. Böttner, in Thermoelectric Materials 2000—The Next Generation Materials for Small-Scale Refrigeration and Power Generation Applications, edited by T.M. Tritt, G.S. Nolas, G.D. Mahan, D. Mandrus, and M.G. Kanatzidis (Mater. Res. Soc. Proc. 626, Warrendale, PA, 2000) p. Z2.1.1.

  24. H. Cui, I. Bhat, B. O’Quinn, and R. Venkatasubramanian, J. Electron. Mater. 30 (2001) p. 1376.

    Google Scholar 

  25. A. Mzerd, D. Sayah, G. Brun, J.C. Tedenac, and A. Boyer, J. Mater. Sci. Lett. 14 (1995) p. 194.

    Google Scholar 

  26. A. Mzerd, D. Sayah, J.C. Tedenac, and A. Boyer, Int. J. Electron. 77 (1993) p. 291.

    Google Scholar 

  27. Y.A. Boikov, V.A. Danilov, T. Claeson, and D. Erts, in Proc. ICT’97 (IEEE, New York, 1997) p. 89.

    Google Scholar 

  28. A. Foucaran, A. Giani, F. Pascal-Delannoy, A. Boyer, and A. Sackda, Mater. Sci. Eng., B 52 (1998) p. 154.

    Google Scholar 

  29. F. Völklein, V. Baier, U. Dillner, and E. Kessler, Thin Solid Films 187 (1990) p. 253.

    Google Scholar 

  30. V.D. Das and P.-G. Ganesan, in Proc. 16th Int. Conf. Thermoelectrics (IEEE, New York, 1997) p. 147.

    Google Scholar 

  31. H. Zou, M. Rowe, and G. Min, in Proc. ICT’00 (IEEE, Piscataway, NJ, 2002) p. 251.

    Google Scholar 

  32. L.W. Da Silva, M. Kaviany, A. DeHennis, and J.S. Dyck, in Proc. ICT’03 (IEEE, Piscataway, NJ, 2003) p. 665.

    Google Scholar 

  33. J. Nurnus, H. Böttner, H. Beyer, and A. Lambrecht, in Proc. ICT’99 (IEEE, Piscataway, NJ, 1999) p. 696.

    Google Scholar 

  34. J.P. Fleurial, L. Gailliard, and R. Triboulet, J. Phys. Chem. Solids 49 (1988) p. 1237.

    Google Scholar 

  35. H. Böttner, A. Schubert, H. Kölbel, A. Gavrikov, A. Mahlke, and J. Nurnus, in Proc. ICT’04, CD-ROM, Paper No. 009 (IEEE, Piscataway, NJ, 2004).

    Google Scholar 

  36. F.R. Harris, S. Standridge, C. Feik, and D.C. Johnson, Angew. Chem. Int. Ed. Engl. 42 (2003) p. 5295.

    Google Scholar 

  37. M. Chitroub, S. Scherrer, and H. Scherrer, J. Phys. Chem. Solids 62 (2000) p. 1693.

    Google Scholar 

  38. A. Lambrecht, H. Beyer, J. Nurnus, C. Künzel, and H. Böttner, in Proc. ICT’01 (IEEE, Piscataway, NJ, 2001) p. 335.

    Google Scholar 

  39. A. Lambrecht, N. Herres, B. Spanger, S. Kuhn, H. Böttner, M. Tacke, and J. Evers, J. Cryst. Growth 108 (1991) p. 301.

    Google Scholar 

  40. G. Springholz, V. Holy, M. Pinczolits, and G. Bauer, Science 282 (1998) p. 734.

    Google Scholar 

  41. H. Zogg and M. Hüppi, Appl. Phys. Lett. 47 (1985) p. 47.

    Google Scholar 

  42. T.C. Harman, D.L. Spears, and M.J. Manfra, J. Electron. Mater. 25 (1996) p. 1121.

    Google Scholar 

  43. T.C. Harman, D.L. Spears, D.R. Calawa, and S.H. Groves, in Proc. 16th Int. Conf. Thermoelectrics (IEEE, New York, 1997) p. 416.

    Google Scholar 

  44. T.C. Harman, D.L. Spears, and M.P. Walsh, J. Electron. Mater. Lett. 28 (1999) p. L1.

    Google Scholar 

  45. T.C. Harman, P.J. Taylor, D.L. Spears, and M.P. Walsh, J. Electron. Mater. 29 (2000) p. L1.

    Google Scholar 

  46. H. Beyer, J. Nurnus, H. Böttner, A. Lambrecht, T. Roch, and G. Bauer, Appl. Phys. Lett. 80 (2002) p. 1216.

    Google Scholar 

  47. J.C. Caylor, K. Coonley, J. Stuart, S. Nangoy, T. Colpitts, and R. Venkatasubramanian, in Proc. 24th Int. Conf. Thermoelectrics (IEEE, Piscataway, NJ, 2005).

    Google Scholar 

  48. N. Peranio, O. Eibl, and J. Nurnus, in Proc. 23rd Int. Conf. Thermoelectrics CD-ROM, Paper No. 1059 (IEEE, Piscataway, NJ, 2004).

    Google Scholar 

  49. J.C. Caylor, M.S. Dander, A.M. Stacy, J.S. Harper, R. Gronsky, and T. Sands, J. Mater. Res. 16 (2001) p. 2467.

    Google Scholar 

  50. W.L. Liu, T. Borca-Tasciuc, G. Chen, J.L. Liu, and K.L. Wang, J. Nanosci. Nanotechnol. 1 (2001) p. 39.

    Google Scholar 

  51. D.W. Song, G. Chen, S. Cho, Y. Kim, and J. Ketterson, in Thermoelectric Materials 2000— The Next Generation Materials for Small-Scale Refrigeration and Power Generation Applications, edited by T.M. Tritt, G.S. Nolas, G.D. Mahan, D. Mandrus, and M.G. Kanatzidis (Mater. Res. Soc. Proc. 626, Warrendale, PA, 2000) p. Z9.1.1.

  52. D.W. Song, W.L. Liu, T. Zeng, T. Borca-Tasciuc, G. Chen, C. Caylor, and T.D. Sands, Appl. Phys. Lett. 77 (2000) p. 3854.

    Google Scholar 

  53. G. Chen, B. Yang, W.L. Liu, T. Borca-Tasciuc, D. Song, D. Achimov, M.S. Dresselhaus, J.L. Liu, and K.L. Wang, Proc. 20th Int. Conf. Thermoelectrics (IEEE, Piscataway, NJ, 2001) p. 30.

    Google Scholar 

  54. S.M. Lee and D.G. Cahill, J. Appl. Phys. 81 (1997) p. 2590.

    Google Scholar 

  55. W.S. Capinski, H.J. Maris, T. Ruf, M. Cardona, K. Ploog, and D.S. Katzer, Phys. Rev. B 59 (1999) p. 8105.

    Google Scholar 

  56. T.C. Harman, J. Appl. Phys. 29 (1958) p. 1373.

    Google Scholar 

  57. C.R. Tellier and A.J. Tosser, Size Effects in Thin Films (Elsevier, Amsterdam, 1982).

    Google Scholar 

  58. G. Chen, J. Heat Transfer 119 (1997) p. 220.

    Google Scholar 

  59. G. Chen, Phys. Rev. B. 57 (1998) p. 14958.

    Google Scholar 

  60. P. Hyldgaard and G.D. Mahan, Phys. Rev. B 56 (1997) p. 10754.

    Google Scholar 

  61. S. Tamura, Y. Tanaka, and H.J. Maris, Phys. Rev. B 60 (1999) p. 2627.

    Google Scholar 

  62. B. Yang and G. Chen, Microscale Thermophys. Eng. 5 (2001) p. 107.

    Google Scholar 

  63. M.V. Simkin and G.D. Mahan, Phys. Rev. Lett. 84 (2000) p. 927.

    Google Scholar 

  64. B. Yang and G. Chen, Phys. Rev. B 67 195311 (2003).

    Google Scholar 

  65. B.C. Daly, H.J. Maris, K. Imamura, and S. Tamura, Phys. Rev. B 66 024301 (2002).

    Google Scholar 

  66. R. Venkatasubramanian, Phys. Rev. B 61 (2000) p. 3091.

    Google Scholar 

  67. B. Yang and G. Chen, in Chemistry, Physics, and Materials Science for Thermoelectric Materials: Beyond Bismuth Telluride, edited by M.G. Kanatzidis, T.P. Hogan, and S.D. Mahanti (Kluwer Academic/Plenum, NY, 2003) p. 147.

    Google Scholar 

  68. R. Venkatasubramanian, E. Siivola, B. O’Quinn, K. Coonley, P. Addepalli, C. Caylor, A. Reddy, and R. Alley, Proc. 24th Int. Conf. Thermoelectrics (IEEE, Piscataway, NJ, 2005).

    Google Scholar 

  69. R. Venkatasubramanian, E. Siivola, B.C. O’Quinn, K. Coonley, P. Addepalli, M. Napier, T. Colpitts, and M. Mantini, Proc. 2003 ACS Symp. Nanotechnol. Environ., ACS Symposium Series 890 (American Chemical Society, Washington, DC, 2004) p. 347.

    Google Scholar 

  70. F. Völklein, M. Blumers, and L. Schmitt, Proc. 18th Int. Conf. Thermoelec. (IEEE, Piscataway, NJ, 1999) p. 285.

    Google Scholar 

  71. J. Nurnus, H. Böttner, C. Künzel, U. Vetter, A. Lambrecht, J. Schumann, and F. Völklein, Proc. 21st Int. Conf. Thermoelectrics (IEEE, Piscataway, NJ, 2002) p. 523).

    Google Scholar 

  72. R. Alley, J. Canchhevaram, K. Coonley, B. O’Quinn, J. Posthill, E. Siivola, and R. Venkatasubramanian, Proc. 24th Int. Conf. Thermoelectrics (IEEE, Piscataway, NJ, 2005).

    Google Scholar 

  73. Y.-M. Lin and M.S. Dresselhaus, Phys. Rev. B 60 075304 (2003).

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Böttner, H., Chen, G. & Venkatasubramanian, R. Aspects of Thin-Film Superlattice Thermoelectric Materials, Devices, and Applications. MRS Bulletin 31, 211–217 (2006). https://doi.org/10.1557/mrs2006.47

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs2006.47

Keywords

Navigation