Skip to main content
Log in

Designed Interfaces in Polymer Nanocomposites: A Fundamental Viewpoint

  • Technical Feature
  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

Using nanocomposites in design-critical applications requires an understanding of their structure–property–function relationships. Despite many reports of highly favorable properties, the behavior of polymer nanocomposites is not generally predictable. The ability to tailor the filler/matrix interaction and an understanding of the impact of the inter face on macroscopic properties are key to designing their properties. Tailoring can be achieved by grafting short mole cules or polymer chains from the surface with precise control over their chain length (1–1000 mers), graft density (0.01–1 chains/nm2), and chemical architecture. The challenge is understanding the impact of the modified surfaces on the properties of the interfacial polymer, which can be more than 50% of the volume of the polymer matrix and, hence, can exert significant control over the macroscopic behavior of the nanocomposite. This ar ticle highlights the fundamental technical challenges that need to be overcome before spherical nanopar ticle or nanotube composites can be designed. In particular, we discuss results from the recent literature that have significantly advanced our ability to predict and control nanocomposite properties through the use of designed interfaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M.M.J. Treacy, T.W. Ebbesen, J.M. Gibson, Nature 381, 678 (1996).

    Article  CAS  Google Scholar 

  2. P.M. Ajayan, P. V. Braun, L.S. Schadler, Nanocom-posite Science and Technology (Wiley, Weinham, Germany, 2003) chap. 2.

    Book  Google Scholar 

  3. A.T. Dibenedetto, Mater. Sci. Eng. A 302, 74 (2001).

    Article  Google Scholar 

  4. L.T. Drzal, M.J. Rich, and M.F. Koenig, J. Adhesion 16, 33 (1983).

    Google Scholar 

  5. S. Granick et al, J. Polym. Sci., Part B: Polym. Phys. 41, 2755 (2003).

    Article  CAS  Google Scholar 

  6. R.L. Jones et al., Nature 400, 146 (1999).

    Article  CAS  Google Scholar 

  7. S.K. Kumar, M. Vacatello, and D.Y. Yoon, J. Chem Phys. 89, 5206 (1988).

    Article  CAS  Google Scholar 

  8. X. Zheng et al., Phys. Rev. Lett.79, 241 (1979).

    Article  Google Scholar 

  9. B. Frank et al., Macromolecules 29, 6531 (1996).

    Article  CAS  Google Scholar 

  10. W. Ding et al., Nano Lett. 3, 1593 (2003).

    Article  CAS  Google Scholar 

  11. I. Borukhov, L. Leibler, Macromolecules 35 (13), 5171 (2002).

    Article  CAS  Google Scholar 

  12. R.A. Vaia, E.P. Giannelis, Macromolecules 30 (25), 8009 (1997).

    Google Scholar 

  13. T.W. Chou, Microstructural Design of Fiber Composites (Cambridge University Press, New York, 1992).

    Book  Google Scholar 

  14. D. Gay, S.V. Hoa, S.W. Tsai, Composite Materials: Design and Applications (CRC Press, New York, 2003).

    Google Scholar 

  15. T. Reiter, G.J. Dvorak, V. Tyergaard, J. Mech. Phys. Solids 45, 1281 (1997).

    Article  CAS  Google Scholar 

  16. Z. Hashin, J. Appl. Mech. 50, 481 (1983).

    Article  Google Scholar 

  17. R.M. Christensen, J. Mech. Phys. Solids 38, 379 (1990).

    Article  Google Scholar 

  18. M.G. Bader, W.H. Bowyer, J. Phys D: Appl. Phys. 5, 2215 (1972).

    Article  CAS  Google Scholar 

  19. K.C. Yung, J. Wang, T.M. Yue, J. Reinf. Plast. Compos. 25, 847 (2006).

    Article  CAS  Google Scholar 

  20. A.B. Dalton et al., Nature 423, 703 (2003).

    Article  CAS  Google Scholar 

  21. J.D.H. Hughes, Compos. Sci. Tech. 41, 13 (1991).

    Article  CAS  Google Scholar 

  22. A.B. Pangelinan, R.L. McCullough, M.J. Kelley, J. Polym. Sci., Part B: Polym. Phys. 32, 2383 (1994).

    Article  CAS  Google Scholar 

  23. D.H. Droste, A.T. Dibenedetto, J. Appl. Polym. Sci. 13, 2149 (1968).

    Article  Google Scholar 

  24. N.R. Sottos, R.L. McCullough, Flight-Vehicle Mater. Struct. Dyn.—Assess. Future Directions 2 (2), 328 (1994).

    Google Scholar 

  25. J.A. Forrest, K. Dalnoki-Veress, Adv. Colloid Interface Sci. 94, 167 (2001).

    Article  CAS  Google Scholar 

  26. J.H. van Zanten, W.E. Wallace, W.-L. Wu, Phys. Rev. E 53 (3), R2053 (1996).

    Article  Google Scholar 

  27. G.B. DeMaggio et al., Phys. Rev. Lett. 78, 1524 (1997).

    Article  Google Scholar 

  28. J.L. Keddie, R.A.L. Jones, R.A. Cory, Faraday Discuss., 98, 219 (1994).

    Article  CAS  Google Scholar 

  29. J.A. Forrest, J. Mattsson, Phys. Rev. E 61, R53 (2000).

    Article  CAS  Google Scholar 

  30. L. Singh, P.J. Ludovice, C.L. Henderson, Thin Solid Films 449, 231 (2004).

    Article  CAS  Google Scholar 

  31. A. Bansal et al., Nature Mater. 4, 693 (2005).

    Article  CAS  Google Scholar 

  32. C.J. Ellison, R.L. Ruszkowski, N.J. Fredin, J.M. Torkelson, Phys. Rev. Lett. 92, 119901 (2004).

    Article  CAS  Google Scholar 

  33. C.J. Ellison, J.M. Torkelson, Nature Mater. 2, 695 (2003).

    Article  CAS  Google Scholar 

  34. B.J. Ash, L.S. Schadler, R.W. Siegel, Mater. Lett. 55 (1–2), 83 (2002).

    Article  CAS  Google Scholar 

  35. C. Becker, H. Krug, H. Schmidt, in Mater. Res. Soc. Symp. Proc., B.K. Coltrain, C. Sanchez, D.W. Schaefer, G.L. Wilkes, Eds. (Materials Research Society, Pittsburgh, PA, 1996), vol. 435, pp. 237–241.

    Google Scholar 

  36. M. Alcoutlabi, G.B. McKenna, J. Phys.: Cond. Matter 17, R461 (2005).

    CAS  Google Scholar 

  37. W.-L. Wu, W.E. Wallace, J. Van Zanten, in Mater. Res. Soc. Symp. Proc., T.-M. Lu, S.P. Murarka, T.-S. Kuan, C.H. Ting, Eds. (Materials Research Society, Pittsburgh, PA, 1995) vol. 381, pp. 147–151.

    Google Scholar 

  38. E.P. Pluddemann, Silane Coupling Agents (Plenum Press, New York, ed. 2, 1991).

    Book  Google Scholar 

  39. E. Bourgeat-Lami, J. Nanosci. Nanotech. 2, 1 (2002).

    Article  CAS  Google Scholar 

  40. O. Prucker, J. Ruhe, Macromolecules 31, 592 (1998).

    Article  CAS  Google Scholar 

  41. J. Pyun, K. Matyjaszewski, Chem. Mater. 13, 3436 (2001).

    Article  CAS  Google Scholar 

  42. R.C. Advincula, J. Dispersion Sci. Tech. 24, 343 (2003).

    Article  CAS  Google Scholar 

  43. S.G. Boyes et al., Surf. Sci. 570, 1 (2004).

    Article  CAS  Google Scholar 

  44. S. Edmondson, V.L. Osborne, W.T.S. Huck, Chem. Soc. Rev. 33, 14 (2004).

    Article  CAS  Google Scholar 

  45. Y. Tsujii et al., Adv. Polym. Sci. 197, 1 (2006).

    Article  CAS  Google Scholar 

  46. C. Li, B.C. Benicewicz, Macromolecules 38, 5929 (2005).

    Article  CAS  Google Scholar 

  47. C. Li, B.C. Benicewicz, Macromolecules 39, 3175 (2006).

    Article  CAS  Google Scholar 

  48. M.E. Mackay et al., Science 311, 1740 (2006).

    Article  CAS  Google Scholar 

  49. J.L. Gardon, J. Phys. Chem. 67, 1935 (1963).

    Article  CAS  Google Scholar 

  50. M. Avella, M.E. Errico, G. Gentile, Macromol. Symp. 234, 170 (2006).

    Article  CAS  Google Scholar 

  51. C.-C.M. Ma, Y.-J. Chen, H.-C. Kuan, J. Appl. Polym. Sci. 98, 2266 (2005).

    Article  CAS  Google Scholar 

  52. A. Navrotsky, Geochem. Trans. 4, 34 (2003).

    Article  Google Scholar 

  53. D.W. Van Krevelen, Properties of Polymers (Elsevier, Amsterdam, 1980).

    Google Scholar 

  54. E.G. Zhulina, T.M. Birshtein, O.V. Borisov, Eur. Phys. J. E 20, 243 (2006).

    Article  CAS  Google Scholar 

  55. J. Klos, T. Pakula, Macromolecules 37, 8145 (2004).

    Article  CAS  Google Scholar 

  56. D.A. Savin et al., J. Polym. Sci. B: Polym. Phys. 40, 2667 (2002).

    Article  CAS  Google Scholar 

  57. S.E. Harton, S.K. Kumar, Macromolecules (2007) in review.

  58. J.M.H.M. Scheutjens, G.J. Fleer, J. Phys. Chem. 83, 1619 (1979).

    Article  CAS  Google Scholar 

  59. E. Helfand, Macromolecules 25, 1676 (1992).

    Article  CAS  Google Scholar 

  60. P.J. Flory, J. Chem. Phys. 9, 660 (1941).

    Article  CAS  Google Scholar 

  61. E. Raphaël, P. Pincus, G.H. Fredrickson, Macromolecules 26, 1996 (1993).

    Article  Google Scholar 

  62. D. Ciprari, K. Jacob, R. Tannenbaum, Macromolecules 39 6565 (2006).

    Article  CAS  Google Scholar 

  63. A. Bansal, J. Polym. Sci. B: Polym. Phys. 44, 2944 (2006).

    Article  CAS  Google Scholar 

  64. S.L. Lewis, PhD thesis, Rensselaer Polytechnic Institute, Troy, NY (2006).

  65. Z.Y. Zhu et al., Macromolecules 38, 8816 (2005).

    Article  CAS  Google Scholar 

  66. M.K. Corbierre, Langmuir 21, 6063 (2005).

    Article  CAS  Google Scholar 

  67. R. Hasegawa, Y. Aoki, M. Doi, Macromolecules 29, 6656 (1996).

    Article  CAS  Google Scholar 

  68. F.J. Esselink et al., Phys. Rev. B 48, 13451 (1993).

    Article  CAS  Google Scholar 

  69. C. Li, T.-W. Chou, Compos. Sci. Tech. 66, 2409 (2006).

    Article  CAS  Google Scholar 

  70. F.T. Fisher, L.C. Brinson, Compos. Sci. Tech. 61, 731 (2001).

    Article  CAS  Google Scholar 

  71. O. Borodin et al., J. Polym. Sci. B: Polym. Phys. 43, 1005 (2005).

    Article  CAS  Google Scholar 

  72. R. Hasegawa, Y. Aoki, M. Doi, Macromolecules 29, 6656 (1996).

    Article  CAS  Google Scholar 

  73. B. Jiang, C. Liu, C. Zhang, B. Wang, Z. Wang, Compos. Part B: Eng. 38, 24 (2007).

    Article  CAS  Google Scholar 

  74. Z. Xiao et al., J. Polym. Sci. B: Polym. Phys. 44, 1084 (2006).

    Article  CAS  Google Scholar 

  75. V.A. Buryachenko, Compos. Sci. Tech. 65, 2435 (2005).

    Article  CAS  Google Scholar 

  76. P.K. Valavala, G.M. Odegard, Rev. Adv. Mater. Sci. 9, 34 (2005).

    CAS  Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schadler, L.S., Kumar, S.K., Benicewicz, B.C. et al. Designed Interfaces in Polymer Nanocomposites: A Fundamental Viewpoint. MRS Bulletin 32, 335–340 (2007). https://doi.org/10.1557/mrs2007.232

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs2007.232

Navigation