Skip to main content
Log in

Strategies for Dispersing Nanoparticles in Polymers

  • Technical Feature
  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

Controlling the dispersion of nanoparticles in polymeric matrices is the most significant impediment in the development of high-perform ance polymer nanocomposite ma te rials and results primarily from the strong interpar ticle interactions between the nanopar ticles. This review examines the theoretical and experimental strategies employed in developing appropriate chemical and physical methods to achieve controlled dispersion of nanopar ticles. Methods to characterize the state of dispersion, including force and electron micros copy, and scattering, electrical, and mechanical spectroscopy, are considered with special emphasis on achieving quantitative meas ures of the dispersion. Some of the outstanding issues, such as long-term aging and the implication for the dispersion of nanopar ticles, development of high-throughput methods for rapid screening, and methods for in-line monitoring, are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. J.N. Israelachvili, Intermolecular Surface Forces (Academic Press, San Diego, ed. 3, 2006).

    Google Scholar 

  2. D.A. Britz, A.N. Khlobystov, Chem. Soc. Rev. 35, 637 (2006).

    Article  CAS  Google Scholar 

  3. L.A. Girifalco, M. Hodak, R.S. Lee, Phys. Rev. B 62, 13104 (2000).

    Article  CAS  Google Scholar 

  4. J.L. Bahr, E.T. Mickelson, M.J. Bronikowski, R.E. Smalley, J.M. Tour, Chem. Commun., 193 (2001).

  5. H. Heinz, R.A. Vaia, B.L. Farmer, J. Chem. Phys. 124, 224713 (2006).

    Article  CAS  Google Scholar 

  6. L. Onsager, Ann. N.Y. Acad. Sci. 51, 627 (1949).

    Article  CAS  Google Scholar 

  7. R.A. Vaia, E.P. Giannelis, Macromol. 30, 7990 (1997).

    Article  CAS  Google Scholar 

  8. C.J. van Oss, M.K. Chaudhury, R.J. Good, Chem. Rev. 88, 927 (1988)

    Article  Google Scholar 

  9. M.E. Mackay et al., Science 311, 1740 (2006).

    Article  CAS  Google Scholar 

  10. J.B. Hooper, K.S. Schweizer, Macromol. 39, 5133 (2006).

    Article  CAS  Google Scholar 

  11. V.V. Ginzburg, A.C. Balazs, Adv. Mater. 12, 1805 (2000).

    Article  CAS  Google Scholar 

  12. A.C. Balazs, C. Singh, E. Zhulina, Macromol. 31, 8370 (1998).

    Article  CAS  Google Scholar 

  13. F.W. Starr, J.F. Douglas, S.C. Glotzer, J. Chem. Phys. 119, 1777 (2003).

    Article  CAS  Google Scholar 

  14. K.L. Anderson, A. Sinsawat, R.A. Vaia, B.L. Farmer, J. Polym. Sci. Part B: Polym. Phys. 43, 1014 (2005); A. Sinsawat, K.L. Anderson, R.A. Vaia, B.L. Farmer, J. Polym. Sci. Part B: Polym. Phys. 41, 3272 (2003).

    Article  CAS  Google Scholar 

  15. N.P. Adhikari et al., Phys. Rev. Lett. 93 188301 (2004).

    Article  CAS  Google Scholar 

  16. C. Zhi et al., J. Am. Chem. Soc. 127, 15996 (2005).

    Article  CAS  Google Scholar 

  17. A. Star, D.W. Steuerman, J.R. Heath, J.F. Stoddart, Angew. Chem. Int. Ed. 41, 2508 (2002).

    Article  CAS  Google Scholar 

  18. C. Zhi et al., J. Phys. Chem. B 110, 1525 (2006).

    Article  CAS  Google Scholar 

  19. K. Yurekli, C.A. Mitchell, R. Krishnamoorti, J. Am. Chem. Soc. 126, 9902 (2004).

    Article  CAS  Google Scholar 

  20. A. Hirsch, O. Vostrowsky, Funct. Mol. Struct. 245, 193 (2005).

    CAS  Google Scholar 

  21. J.L. Bahr, J.M. Tour, Chem. Mater. 13, 3823 (2001); C.A. Dyke, J.M. Tour, J. Phys. Chem. A 108, 11151 (2004).

    Article  CAS  Google Scholar 

  22. C.A. Mitchell et al., Macromol. 35, 8825 (2002).

    Article  CAS  Google Scholar 

  23. Y.M. Ying et al., Org. Lett. 5, 1471 (2003).

    Article  CAS  Google Scholar 

  24. V.N. Khabashesku, W.E. Billups, J.L. Margrave, Acc. Chem. Res. 35, 1087 (2002).

    Article  CAS  Google Scholar 

  25. A. Usuki et al., J. Mater. Res. 8, 1179 (1993).

    Article  CAS  Google Scholar 

  26. J. Pyun, K. Matyjaszewski, Chem. Mater. 13, 3436 (2001).

    Article  CAS  Google Scholar 

  27. Z.M. Wang, H. Nakajima, E. Manias, T.C. Chung, Macromol. 36, 8919 (2003); L. Xu et al., Nanotechnology 16, S514 (2005).

    Article  CAS  Google Scholar 

  28. T.D. Fornes, P.J. Yoon, H. Keskkula, D.R. Paul, Polym. 42, 9929 (2001).

    Article  CAS  Google Scholar 

  29. J. Zhao, A.B. Morgan, J.D. Harris, Polym. 46, 8641 (2005).

    Article  CAS  Google Scholar 

  30. C. Park et al., Chem. Phys. Lett. 364, 303 (2002).

    Article  CAS  Google Scholar 

  31. H. Koerner, D. Misra, A. Tan, L. Drummy, P. Mirau, R. Vaia, Polymer 47, 3426 (2006).

    Article  CAS  Google Scholar 

  32. K. Khait, J.M. Torkelson, Polym. Plast. Technol. Eng. 38, 445 (1999).

    Article  CAS  Google Scholar 

  33. J.M. Torkelson, A. Lebovitz, K. Kasimatis, K. Khait, “Method of producing exfoliated polymer-clay nanocomposite and polymer-clay nanocomposite produced therefrom,” U.S. Patent Application No. 20060178465 (August 10, 2006).

  34. N. Pierard et al., Carbon 42, 1691 (2004).

    Article  CAS  Google Scholar 

  35. S. Bandi, M. Bell, D.A. Schiraldi, Macromol. 38, 9216 (2005).

    Article  CAS  Google Scholar 

  36. L.A. Capadona, M.A.B. Meador, A. Alunni, E.F. Fabrizio, P. Vassilaras, N. Leventis, Polymer 47, 5754 (2006); P. Innocenzi, G. Brusatin, Chem. Mater. 13, 3126 (2001).

    Article  CAS  Google Scholar 

  37. A.B. Morgan, J.W. Gilman, J. Appl. Polym. Sci. 87, 1329 (2003); T.D. Fornes et al., Polym. 43, 5915 (2002); H.R. Dennis et al., Polym. 42, 9513 (2001).

    Article  CAS  Google Scholar 

  38. A. Vermogen et al., Macromol. 38, 9661 (2005).

    Article  CAS  Google Scholar 

  39. A. Usuki, N. Hasegawa, H. Kadoura, T. Okamoto, Nano Lett. 1, 271 (2001); E. Kumacheva, O.K.L. Lilge, Adv. Mater. 11, 231 (1999).

    Article  CAS  Google Scholar 

  40. L.F. Drummy et al., J. Phys. Chem. B 109, 17868 (2005); J. Ryszkowska, in Adv. Mater. Forum III, Pts. 1–2, 514–516, 1658 (2006); Z.L. Wang, Adv. Mater. 15, 1497 (2003).

    Article  CAS  Google Scholar 

  41. D.W. Schaefer, M.M. Agamalian, Curr. Opin. Solid State Mater. Sci. 8, 39 (2004); B.J. Olivier et al., Macromol. 29, 8615 (1996).

    Article  CAS  Google Scholar 

  42. M. Gelfer et al., Langmuir 20, 3746 (2004); A. Bafna, G. Beaucage, F. Mirabella, S. Mehta, Polymer 44, 1103 (2003).

    Article  CAS  Google Scholar 

  43. J.D.F. Ramsay, P. Lindner, J. Chem. Soc. Faraday Trans. 89, 4207 (1993); J.D.F. Ramsay, S.W. Swanton, J. Bunce, J. Chem. Soc. Faraday Trans. 86, 3919 (1990).

    Article  CAS  Google Scholar 

  44. D.L. Ho, R.M. Briber, C.J. Glinka, Chem. Mater. 13, 1923 (2001).

    Article  CAS  Google Scholar 

  45. R.A. Vaia, W.D. Liu, H. Koerner, J. Polym. Sci. Part B: Polym. Phys. 41, 3214 (2003).

    Article  CAS  Google Scholar 

  46. D.W. Schaefer et al., Chem. Phys. Lett. 375, 369 (2003).

    Article  CAS  Google Scholar 

  47. M. Moniruzzaman, K.I. Winey, Macromol. 39, 5194 (2006).

    Article  CAS  Google Scholar 

  48. W. Zhou et al., Chem. Phys. Lett. 384, 185 (2004).

    Article  CAS  Google Scholar 

  49. P.H. Maupin, J.W. Gilman, R.H. Harris, S. Bellayer, A.J. Bur, S.C. Roth, M. Murariu, A.B. Morgan, J.D. Harris, Macromol. Rapid Commun. 25, 788 (2004).

    Article  CAS  Google Scholar 

  50. R.A. Graff et al., Adv. Mater. 17, 980 (2005).

    Article  CAS  Google Scholar 

  51. C. Park et al., J. Polym. Sci. Part B: Polym. Phys. 44, 1751 (2006).

    Article  CAS  Google Scholar 

  52. M. Surve, V. Pryamitsyn, V. Ganesan, Langmuir 22, 969 (2006).

    Article  CAS  Google Scholar 

  53. R. Krishnamoorti, K. Yurekli, Curr. Opin. Colloid Interface Sci. 6, 464 (2001).

    Article  CAS  Google Scholar 

  54. T. Chatterjee, K. Yurekli, V.G. Hadjiev, R. Krishnamoorti, Adv. Funct. Mater. 15, 1832 (2005).

    Article  CAS  Google Scholar 

  55. J. Ren, A.S. Silva, R. Krishnamoorti, Macro-molecules 33, 3739 (2000).

    Article  CAS  Google Scholar 

  56. E.J. Garboczi, K.A. Snyder, J.F. Douglas, M.F. Thorpe, Phys. Rev. E 52, 819 (1995).

    Article  CAS  Google Scholar 

  57. S. Salaniwal, S.K. Kumar, J.F. Douglas, Phys. Rev. Lett. 89, 258301 (2002); G. Schmidt et al., Macromolecules 33, 7219 (2000); C.A. Mitchell, R. Krishnamoorti, Macromolecules 40, 1538 (2007).

    Article  CAS  Google Scholar 

  58. J.X. Ren, B.F. Casanueva, C.A. Mitchell, R. Krishnamoorti, Macromolecules 36, 4188 (2003); V. Goel et al., J. Polym. Sci. Part B: Polym. Phys. 44, 2014 (2006).

    Article  CAS  Google Scholar 

  59. D.A. Tsyboulski, S.M. Bachilo, R.B. Weisman, Nano Lett. 5, 975 (2005).

    Article  CAS  Google Scholar 

  60. R.A. Vaia, E.P. Giannelis, Macromolecules 30, 8000 (1997).

    Article  CAS  Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Krishnamoorti, R. Strategies for Dispersing Nanoparticles in Polymers. MRS Bulletin 32, 341–347 (2007). https://doi.org/10.1557/mrs2007.233

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs2007.233

Navigation