Skip to main content
Log in

Design Parameters for Superhydrophobicity and Superoleophobicity

  • Technical Feature
  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

Recent experiments have revealed that the wax on the lotus leaf surface, by itself, is weakly hydrophilic, even though the lotus leaf is known to be superhydrophobic. Conventional understanding suggests that a surface of such waxy composition should not be able to support superhydrophobicity and high contact angles between a liquid and the surface. Here, we show that the unexpected superhydrophobicity is related to the presence of “reentrant texture” (that is, a multivalued surface topography) on the surface of the lotus leaf. We exploit this understanding to enable the development of superoleophobic surfaces (i.e., surfaces that repel extremely low-surface-tension liquids, such as various alkanes), where essentially no naturally oleophobic materials exist. We also develop general design parameters that enable the evaluation of the robustness of the composite interface on a particular surface. Based on these design parameters, we also rank various superhydrophobic and superoleophobic substrates discussed in the literature, with particular emphasis on surfaces developed from inherently hydrophilic or oleophilic materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Y. Yu, Z.H. Zhao, Q.S. Zheng, Langmuir 23 (15), 8212 (2007).

    Google Scholar 

  2. M. Callies, D. Quéré, Soft Mater. 1 (1), 55 (2005).

    Google Scholar 

  3. L. Cao, H.H. Hu, D. Gao, Langmuir 23 (8), 4310 (2007).

    Google Scholar 

  4. A. Otten, S. Herminghaus, Langmuir 20 (6), 2405 (2004).

    Google Scholar 

  5. W. Chen, A.Y. Fadeev, M.C. Hsieh, D. Oner, J. Youngblood, T.J. McCarthy, Langmuir 15 (10), 3395 (1999).

    Google Scholar 

  6. A. Tuteja, W. Choi, M.L. Ma, J.M. Mabry, S.A. Mazzella, G.C. Rutledge, G.H. McKinley, R.E. Cohen, Science 318 (5856), 1618 (2007).

    Google Scholar 

  7. W.A. Zisman, Relation of the equilibrium contact angle to liquid and solid construction. In Contact Angle, Wettability and Adhesion, ACS Advances in Chemistry Series (American Chemical Society: Washington, DC, 1964), vol. 43, pp. 1–51.

    Google Scholar 

  8. K. Tsujii, T. Yamamoto, T. Onda, S. Shibuichi, Angew. Chem., Int. Ed. Engl. 36 (9), 1011 (1997).

    Google Scholar 

  9. S. Shibuichi, T. Yamamoto, T. Onda, K. Tsujii, J. Colloid Interface Sci. 208 (1), 287 (1998).

    Google Scholar 

  10. A. Ahuja, J.A. Taylor, V. Lifton, A.A. Sidorenko, T.R. Salamon, E.J. Lobaton, P. Kolodner, T.N. Krupenkin, Langmuir 24 (1), 9 (2008).

    Google Scholar 

  11. S.R. Coulson, I.S. Woodward, J.P.S. Badyal, S.A. Brewer, C. Willis, Chem. Mater. 12 (7), 2031 (2000).

    Google Scholar 

  12. S. Herminghaus, Europhys. Lett. 52 (2), 165 (2000).

    Google Scholar 

  13. N.J. Shirtcliffe, G. McHale, M.I. Newton, C.C. Perry, B.F. Pyatt, Appl. Phys. Lett. 89 (10), 104106 (2006).

    Google Scholar 

  14. L. Zhai, F.C. Cebeci, R.E. Cohen, M.F. Rubner, Nano Lett. 4 (7), 1349 (2004).

    Google Scholar 

  15. The submerged superhydrophobic surface acts like a mirror because of the total internal reflection of light caused by the entrainment of the thin layer of air between the superhydrophobic surface and water.

  16. L. Zhai, M.C. Berg, F.C. Cebeci, Y. Kim, J.M. Milwid, M.F. Rubner, R.E. Cohen, Nano Lett. 6 (6), 1213 (2006).

    Google Scholar 

  17. F.C. Cebeci, Z. Wu, L. Zhai, R.E. Cohen, M.F. Rubner, Langmuir 22 (6), 2856 (2006).

    Google Scholar 

  18. R.N. Wenzel, Ind. Eng. Chem. 28, 988 (1936).

    Google Scholar 

  19. A.B.D. Cassie, S. Baxter, Trans. Faraday Soc. 40, 546 (1944).

    Google Scholar 

  20. A. Marmur, Langmuir 19 (20), 8343 (2003).

    Google Scholar 

  21. M. Nosonovsky, Langmuir 23 (6), 3157 (2007).

    Google Scholar 

  22. R.E. Johnson, R.H. Dettre, Contact angle hysteresis. In Contact Angle, Wettability and Adhesion, ACS Advances in Chemistry Series (American Chemical Society: Washington, DC, 1964), vol. 43, pp. 112–135.

    Google Scholar 

  23. N.A. Patankar, Langmuir 19 (4), 1249 (2003).

    Google Scholar 

  24. A. Lafuma, D. Quéré, Nat. Mater. 2 (7), 457 (2003).

    Google Scholar 

  25. B. He, N.A. Patankar, J. Lee, Langmuir 19 (12), 4999 (2003).

    Google Scholar 

  26. L. Barbieri, E. Wagner, P. Hoffmann, Langmuir 23 (4), 1723 (2007).

    Google Scholar 

  27. J. Bico, U. Thiele, D. Quéré, Colloid Surf. A 206, 41 (2002).

    Google Scholar 

  28. Y.-T. Cheng, D.E. Rodak, Appl. Phys. Lett. 86 (14), 144101 (2005).

    Google Scholar 

  29. J.-L. Liu, X.-Q. Feng, G. Wang, S.-W. Yu, J. Phys.: Condens. Matter 19 (35), 356002 (2007).

    Google Scholar 

  30. C.W. Extrand, Langmuir 18 (21), 7991 (2002).

    Google Scholar 

  31. D.H. Reneker, A.L. Yarin, H. Fong, S. Koombhongse, J. Appl. Phys. 87 (9), 4531 (2000).

    Google Scholar 

  32. M. Ma, R.M. Hill, J.L. Lowery, S.V. Fridrikh, G.C. Rutledge, Langmuir 21 (12), 5549 (2005).

    Google Scholar 

  33. M. Ma, M. Gupta, Z. Li, L. Zhai, K.K. Gleason, R.E. Cohen, M.F. Rubner, G.C. Rutledge, Adv. Mater. 19 (2), 255 (2007).

    Google Scholar 

  34. T.N. Krupenkin, J.A. Taylor, E.N. Wang, P. Kolodner, M. Hodes, T.R. Salamon, Langmuir 23 (18), 9128 (2007).

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tuteja, A., Choi, W., McKinley, G.H. et al. Design Parameters for Superhydrophobicity and Superoleophobicity. MRS Bulletin 33, 752–758 (2008). https://doi.org/10.1557/mrs2008.161

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs2008.161

Navigation