Skip to main content

Advertisement

Log in

Field-Activated Electroactive Polymers

  • Technical Feature
  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

Field-activated electroactive polymers (FEAPs) are a class of electroactive polymers that are insulating and exhibit coulombic interaction with and dipole formation in response to external electric signals. There are many polarization mechanisms in insulating polymers, from the molecular to the mesoscopic and even the macroscopic level, which couple strongly with mechanical deformation and can be used to create polymer actuators and sensors. FEAPs feature fast response speed limited by the polymer dielectric and elastic relaxation time, a very large strain level (to more than 100% strain), high electromechanical efficiency, the ability to operate down to micro/nanoelectromechanical devices, and a highly reproducible strain response under electric fields. One challenge in FEAP actuators and electromechanical devices is reducing the operation voltage to below 100 V or even 10 V while achieving an electromechanical conversion efficiency comparable with that of inorganic electroactive materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T.T. Wang, J.M. Herbert, A.M. Glass, The Applications of Ferroelectric Polymers (Blackie and Son, New York, 1988).

    Google Scholar 

  2. G.M. Sessler, Electrets (Laplacian Press, ed. 3, vol. 1, 1998).

  3. Yuhuan Xu, Ferroelectric Materials and Their Applications (Elsevier Science, 1991).

  4. Y.M. Shkel, D.J. Klingenberg, J. Appl. Phys. 83, 415 (1998).

    Google Scholar 

  5. R.E. Newnham, V. Sundar, R. Yimmirun, J. Su, Q.M. Zhang, Ceram. Trans. 88, 15 (1998).

    Google Scholar 

  6. L.D. Landau, E.M. Lifshitz, Electrodynamics of Continuous Media (Pergamon, Oxford, 1970).

    Google Scholar 

  7. R. Pelrine, R. Kornbluh, Q. Pei, J. Joseph, Science 287, 836 (2000).

    Google Scholar 

  8. S. Bauer, IEEE Trans. Dielectrics and Electrical Insulation 13, 953 (2006).

    Google Scholar 

  9. Y. Takase, J.W. Lee, J.I. Scheinbeim, B.A. Newman, Macromolecules 24, 6644 (1991).

    Google Scholar 

  10. J. Su, Z.Y. Ma, J.I. Scheinbeim, B.A. Newman, J. Polym. Sci. B 33, 85 (1995).

    Google Scholar 

  11. Q. Gao, J.I. Scheinbeim, B.A. Newman, Macromolecules 33, 7564 (2000).

    Google Scholar 

  12. A.J. Lovinger, G.T. Davis, T. Furukawa, M.G. Broadhurst, Macromolecules 15, 323 (1982).

    Google Scholar 

  13. A.J. Lovinger, Developments in Crystalline Polymers-1 D.C. Bassett, Ed., 195 (Applied Science Publishers, London, 1982).

    Google Scholar 

  14. A.J. Lovinger, T. Furukawa, Ferroelectrics 50, 227 (1983).

    Google Scholar 

  15. Q.M. Zhang, J. Zhao, T. Shrout, N. Kim, L.E. Cross, A. Amin, B.M. Kulwicki, J. Appl. Phys. 77, 2549 (1995).

    Google Scholar 

  16. C. Huang, R. Klein, F. Xia, H.F. Li, Q.M. Zhang, F. Bauer, Z.-Y. Cheng, IEEE Trans. Dielectrics and Electrical Insulation 11, 299 (2004).

    Google Scholar 

  17. Q.M. Zhang, V. Bharti, X. Zhao, Science 280, 2101 (1998).

    Google Scholar 

  18. Z.-Y. Cheng, T.-B. Xu, V. Bharti, S. Wang, Q.M. Zhang, Appl. Phys. Lett. 74, 1901 (1999).

    Google Scholar 

  19. S. Guo, X.-Z. Zhao, Q. Zhuo, H.L.W. Chan, C.L. Choy, Appl. Phys. Lett. 84, 3349 (2004).

    Google Scholar 

  20. F. Xia, Z.-Y. Cheng, H. Xu, H. Li, Q.M. Zhang, G. Kavarnos, R. Ting, G. Abdul-Sedat, K.D. Belfield, Adv. Mater. 14, 1574 (2002).

    Google Scholar 

  21. H. Xu, Z.-Y. Cheng, D. Olson, T. Mai, Q.M. Zhang, G. Kavarnos, Appl. Phys. Lett. 78, 2360 (2001).

    Google Scholar 

  22. J.T. Carrett, C.M. Roland, A. Petchsuk, T.C. Chung, Appl. Phys. Lett. 83, 1190 (2003).

    Google Scholar 

  23. Z.-Y. Cheng, R.S. Katiyar, X. Yao, A.S. Bhalla, Phys. Rev. B 57, 8166 (1998).

    Google Scholar 

  24. Z.-Y. Cheng, Q.M. Zhang, F.B. Bateman, J. Appl. Phys. 92, 6749 (2002).

    Google Scholar 

  25. Z.-Y. Cheng, D. Olson, H.S. Xu, F. Xia, J.S. Hundal, Q.M. Zhang, F.B. Bateman, G.J. Kavarnos, T. Ramotowski, Macromolecules 35, 664 (2002).

    Google Scholar 

  26. Z.M. Li, M.D. Arbatti, Z.-Y. Cheng, Macromolecules 37, 79 (2004).

    Google Scholar 

  27. Z.M. Li, S.Q. Li, Z.-Y. Cheng, J. Appl. Phys. 97, 014102 (2005).

    Google Scholar 

  28. A.C. Jayasuriya, A Schirokauer, J.I. Scheinbeim, J. Polym. Sci., Part B: Polym. Phys. 39, 2793 (2001).

    Google Scholar 

  29. M. Wegener, J. Hesse, K. Richter, R. Gerhard-Multhaupt, J. Appl. Phys. 92, 7442 (2002).

    Google Scholar 

  30. B. Neese, Y. Wang, B.J. Chu, K.L. Ren, S. Liu, Q.M. Zhang, C. Huang, J. West, Appl. Phys. Lett. 90, 242917 (2007).

    Google Scholar 

  31. Z.M. Li, Y.H. Wang, Z.-Y. Cheng, Appl. Phys. Lett. 88, 062904 (2006).

    Google Scholar 

  32. R. Klein, F. Xia, Q.M. Zhang, F. Bauer, J. Appl. Phys. 97, 094105 (2005).

    Google Scholar 

  33. J. Su, J.S. Harrison, T.L. St. Clair, “Electrostrictive graft elastomers,” U.S. Patent 6,515,077 (February 4, 2003).

  34. W. Lehmann, H. Skupin, C. Tolksdorf, E. Gebhard, R. Zentel, P. Krüger, M. Lösche, F. Kremer, Nature 410, 447 (2001).

    Google Scholar 

  35. C. Huang, Q.M. Zhang, A. Jákli, Adv. Funct. Mater. 13, 525 (2003).

    Google Scholar 

  36. M. Zhenyi, J.I. Scheinbeim, J. Lee, B.A. Newman, J. Polym. Sci., Part B: Polym. Phys. 32, 2721 (1994).

    Google Scholar 

  37. G. Kofod, P. Sommer-Larsen, R. Kornbluh, R. Pelrine, J. Intell. Mater. Syst. Struct. 14, 787 (2003).

    Google Scholar 

  38. Z.M. Li, Z.-Y. Cheng, Proc. SPIE 5759, 252 (2005).

    Google Scholar 

  39. Z. Zhao, Z. Suo, Appl. Phys. Lett. 91, 061921 (2007).

    Google Scholar 

  40. G. Kofod, W. Wirges, M. Paajanen, S. Bauer, Appl. Phys. Lett. 90, 081916 (2007).

    Google Scholar 

  41. Q.M. Zhang, H.F. Li, M. Poh, H.S. Xu, Z.-Y. Cheng, F. Xia, C. Huang, Nature 419, 284 (2002).

    Google Scholar 

  42. M. Eguchi, Philos. Mag. 49, 178 (1925).

    Google Scholar 

  43. S. Bauer, R. Gerhard-Multhaupt, G. Sessler, Phys. Today 57, 37 (2004).

    Google Scholar 

  44. X. Zhang, J. Hillenbrand, G.M. Sessler, J. Phys. D: Appl. Phys. 37, 2146 (2004).

    Google Scholar 

  45. M. Paajanen, J. Lekkala, K. Kirjavanen, Sens. Actuators A 84, 95 (2000).

    Google Scholar 

  46. G.M. Sessler, J. Hillenbrand, Appl. Phys. Lett. 75, 3405 (1999).

    Google Scholar 

  47. W. Wireges, M. Wagener, O. Voronina, L. Zirkel, R. Gerhard-Multhaupt, Adv. Funct. Mater. 17, 324 (2007).

    Google Scholar 

  48. Z.-Y. Cheng, V. Bharti, T.-B. Xu, H. Xu, T. Mai, and Q.M. Zhang, Sens. Actuators, A 90, 138 (2001).

    Google Scholar 

  49. T.B. Xu, Z.-Y. Cheng, Q.M. Zhang, Appl. Phys. Lett. 80, 1082 (2002).

    Google Scholar 

  50. A. Strachan, W.A. Goddard III, Appl. Phys. Lett. 86, 083103 (2005).

    Google Scholar 

  51. I. Graz, M. Kaltenbrunner, C. Keplinger, R. Schwodiauer, S. Bauer, S.P. Lacour, S. Wagner, Appl. Phys. Lett. 89, 073501 (2006).

    Google Scholar 

  52. K. Kimura, H. Ohigashi, Appl. Phys. Lett. 43, 834 (1983).

    Google Scholar 

  53. Q.M. Zhang, H.S. Xu, F. Fang, Z.-Y. Cheng, X. Feng, H. You, J. Appl. Phys. 89, 2613 (2001).

    Google Scholar 

  54. K. Urayama, M. Tsuji, D. Neher, Macromolecules 33, 8269 (2000).

    Google Scholar 

  55. T. Nakajima, R. Abe, Y. Takahashi, T. Furukawa, Jpn. J. Appl. Phys. 44, L1385 (2005).

    Google Scholar 

  56. Y.J. Park, S.J. Kang, C. Park, K.J. Kim, H.S. Lee, M.S. Lee, U.I. Chung, I.J. Park, Appl. Phys. Lett. 88, 242908 (2006).

    Google Scholar 

  57. A. Bune, V. Fridkin, S. Ducharme, L. Blinov, S. Palto, A. Sorokin, S. Yudin, A. Zlatkin, Nature 391, 874 (1998).

    Google Scholar 

  58. S. Ducharme, V. Fridkin, A. Bune, S. Palto, L. Blinov, N. Petukhova, S. Yudin, Phys. Rev. Lett. 84, 175 (2000).

    Google Scholar 

  59. A. Bune, C. Zhu, S. Ducharme, L. Blinov, V. Fridkin, S. Palto, N. Petukhova, S. Yudin, J. Appl. Phys. 85, 7869 (1999).

    Google Scholar 

  60. H.M. Manohara, E. Morikawa, J.W. Choi, P.T. Sprunger, JMEMS 8, 417 (1999).

    Google Scholar 

  61. Z.J. Hu, G. Baralia, V. Bayot, J.F. Gohy, A.M. Jonas, Nano Lett. 5, 1738 (2005).

    Google Scholar 

  62. S.J. Kang, Y.J. Park, J.Y. Hwang, H.J. Jeong, J.S. Lee, K.J. Kim, H.C. Kim, J. Huh, C. Park, Adv. Mater. 19, 581 (2007).

    Google Scholar 

  63. M. Steinhart, J.H. Wendorff, A. Greiner, R.B. Wehrspohn, K. Nielsch, J. Schiling, J. Choi, U. Gosele, Science 296, 1997 (2002).

    Google Scholar 

  64. M. Steinhart, S. Senz, R.B. Wehrspohn, U. Gosele, J.H. Wendorff, Macromolecules 36, 3646 (2003).

    Google Scholar 

  65. S.T. Lau, R.K. Zheng, H.L.W. Chan, C.L. Choy, Mater. Lett. 60, 2357 (2006).

    Google Scholar 

  66. D. Li, Y. Xia, Adv. Mater. 16, 1151 (2004).

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cheng, Z., Zhang, Q. Field-Activated Electroactive Polymers. MRS Bulletin 33, 183–187 (2008). https://doi.org/10.1557/mrs2008.43

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs2008.43

Navigation