Skip to main content
Log in

Hard Materials with Tunable Porosity

  • Technical Feature
  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

Porous metals and ceramic materials are of critical importance in catalysis, sensing, and adsorption technologies and exhibit unusual mechanical, magnetic, electrical, and optical properties compared to nonporous bulk materials. Materials with nanoscale porosity often are formed through molecular self-assembly processes that lock in a particular length scale; consider, for instance, the assembly of crystalline mesoporous zeolites with a pore size of 2–50 nm or the evolution of structural domains in block copolymers. Of recent interest has been the identification of general kinetic pattern-forming principles that underlie the formation of mesoporous materials without a locked- in length scale. When materials are kinetically locked out of thermodynamic equilibrium, temperature or chemistry can be used as a “knob” to tune their microstructure and properties. In this issue of the MRS Bulletin, we explore new porous metal and ceramic materials, which we collectively refer to as “hard” materials, formed by pattern-forming instabilities, either in the bulk or at interfaces, and discuss how such nonequilibrium processing can be used to tune porosity and properties. The focus on hard materials here involves thermal, chemical, and electrochemical processing usually not compatible with soft (for example, polymeric) porous materials and generally adds to the rich variety of routes to fabricate porous materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. K. Ishizaki, Porous Materials: Process Technology and Applications (Kluwer, New York, 1998).

    Google Scholar 

  2. M. Dietterle, T. Will, D.M. Kolb, Surf. Sci. 327, L495 (1995).

    Google Scholar 

  3. E. Pichardo-Pedrero, G.L. Beltramo, M. Giesen, Appl. Phys. A 87, 461 (2007).

    Google Scholar 

  4. J.W. Cahn, Acta Metall. 10, 907 (1962).

    Google Scholar 

  5. J.W. Cahn, J.E. Hilliard, J. Chem. Phys. 28, 258 (1958).

    Google Scholar 

  6. J.W. Cahn, J.E. Hilliard, J. Chem. Phys. 31, 688 (1959).

    Google Scholar 

  7. E.G. Seebauer, C.E. Allen, Prog. Surf. Sci. 49, 265 (1995).

    Google Scholar 

  8. J. Erlebacher, M.J. Aziz, A. Karma, N. Dimitrov, K. Sieradzki, Nature 410, 450 (2001).

    Google Scholar 

  9. C. Calvert, R. Johnson, J. Chem. Soc. 19, 434 (1866).

    Google Scholar 

  10. R.C. Newman, S.G. Corcoran, J. Erlebacher, M.J. Aziz, K. Sieradzki, MRS Bull. 24, 24 (1999).

    Google Scholar 

  11. A.J. Forty, Nature 282, 597 (1979).

    Google Scholar 

  12. A.J. Forty, in Sir Charles Frank: An 80th Birthday Tribute, R.B. Chamber, Ed. (Adam Hilger, Bristol, 1991), p. 164.

    Google Scholar 

  13. S. Rambert, D. Landolt, Electrochim. Acta 31, 1421 (1986).

    Google Scholar 

  14. S. Rambert, D. Landolt, Electrochim. Acta 31, 1433 (1986).

    Google Scholar 

  15. A.J. Smith, T. Tran, M.S. Wainwright, J. Appl. Electrochem. 29, 1085 (1999).

    Google Scholar 

  16. U.-S. Min, J.C.M. Li, J. Mater. Res. 9, 2878 (1994).

    Google Scholar 

  17. S. Koh, N. Hahn, C.F. Yu, P. Strasser, J. Electrochem. Soc. 155, B1281 (2008).

    Google Scholar 

  18. A.J. Smith, D.L. Trimm, Annu. Rev. Mater. Res. 35, 127 (2005).

    Google Scholar 

  19. J. Erlebacher, J. Electrochem. Soc. 151, C614 (2004).

    Google Scholar 

  20. J. Rugolo, J. Erlebacher, K. Sieradzki, Nat. Mater. 5, 946 (2006).

    Google Scholar 

  21. J. Snyder, K. Livi, J. Erlebacher, J. Electrochem. Soc. 155, C464 (2008).

    Google Scholar 

  22. J. Snyder, P. Asanithi, A.B. Dalton, J. Erlebacher, Adv. Mater. 20 4883 (2008).

    Google Scholar 

  23. J.-F. Huang, Chem. Commun. 1270 (2009).

  24. R. Zeis, A. Mathur, G. Fritz, J. Lee, J. Erlebacher, J. Power Sources 165, 65 (2007).

    Google Scholar 

  25. C. Xu, J.X. Su, X.H. Xu, P.P. Liu, H.J. Zhao, F. Tian, Y. Ding, J. Am. Chem. Soc. 129, 42 (2007).

    Google Scholar 

  26. S. Ahl, P.J. Cameron, J. Liu, W. Knoll, J. Erlebacher, F. Yu, Plasmonics 3, 13 (2007).

    Google Scholar 

  27. F. Yu, S. Ahl, A.M. Caminade, J.P. Majoral, W. Knoll, J. Erlebacher, Anal. Chem. 78, 7346 (2006).

    Google Scholar 

  28. C. Xu, X. Xu, J. Su, Y. Ding, J. Catal. 252, 243 (2007).

    Google Scholar 

  29. R.C. Cammarata, Prog. Surf. Sci., 46, 1 (1994).

    Google Scholar 

  30. H.J. Jin, S. Parida, D. Kramer, J. Weissmüller, Surf. Sci. 602, 3588 (2008).

    Google Scholar 

  31. D. Kramer, R.N. Viswanth, J. Weissmüller, Nano Lett. 4, 793 (2004).

    Google Scholar 

  32. J. Weissmüller, R.N. Viswanath, D. Kramer, P. Zimmer, R. Wurschum, H. Gleiter, Science 300, 312 (2003).

    Google Scholar 

  33. H.J. Qiu, C.X. Xu, X.R. Huang, Y. Ding, Y.B. Qu, P.J. Gao, J. Phys. Chem. C 113, 2521 (2009).

    Google Scholar 

  34. P.N. Ciesielski, A.M. Scott, C.J. Faulkner, B.J. Berron, D.E. Cliffel, G.K. Jennings, ACS Nano 2, 2465 (2008).

    Google Scholar 

  35. Y. Suzuki, P.E.D. Morgan, T. Ohji, J. Am. Ceram. Soc. 83, 2091 (2000).

    Google Scholar 

  36. Suzuki, T. Yamada, S. Sakakibara, T. Ohji, Ceram. Eng. Sci. Proc. 21, 19 (2000).

    Google Scholar 

  37. D.V. Pugh, A. Dursun, S.G. Corcoran, J. Mater. Res. 18, 216 (2003).

    Google Scholar 

  38. L.-Y. Chen, J.-S. Yu, T. Fujita, M.-W. Chen, Adv. Funct. Mat. 19, 1 (2009).

    Google Scholar 

  39. Y. Ding, M. Chen, J. Erlebacher, J. Am. Chem. Soc., 126, 6876 (2004).

    Google Scholar 

  40. G.W. Nyce, J.R. Hayes, A.V. Hamza, J.H. Satcher, Chem. Mater. 19, 344 (2007).

    Google Scholar 

  41. E.S. Toberer, J.P. Löfvander, R. Seshadri, Chem. Mater. 18, 1047 (2006).

    Google Scholar 

  42. E.S. Toberer, J.-D. Epping. B.F. Chmelka, R. Seshadri, Chem. Mater. 18, 6345 (2006).

    Google Scholar 

  43. E.S. Toberer, M. Grossman, T. Schladt, F.F. Lange, R. Seshadri, Chem. Mater. 19, 4833 (2007).

    Google Scholar 

  44. D.P. Shoemaker, M. Grossman, R. Seshadri, J. Phys.: Condens. Matter 20, 195219 (2008).

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Erlebacher, J., Seshadri, R. Hard Materials with Tunable Porosity. MRS Bulletin 34, 561–568 (2009). https://doi.org/10.1557/mrs2009.155

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs2009.155

Navigation