Skip to main content

Advertisement

Log in

Novel Electromechanical Phenomena at the Nanoscale: Phenomenological Theory and Atomistic Modeling

  • Technical Feature
  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

In the past two decades, the fact that “small is different” has been established for a wide variety of phenomena, including electrical, optical, magnetic, and mechanical behavior of materials. However, one largely untapped but potentially very important area of nanoscience involves the interplay of electricity and mechanics at the nanoscale. In this article, predicated on both phenomenological approaches and atomistic calculations, we summarize the state-of-the-art in understanding electromechanical coupling at the nanoscale. First, we address flexoelectricity—the coupling of strain gradient to polarization. Flexoelectricity exists in both piezoelectric and nonpiezoelectric dielectrics. As a high-order spatial-dispersion effect, the flexoelectricity becomes more and more important with the reduction of the spatial scale of the problem. Exploitation of this phenomenon and the associated nanoscale size effects can lead to tantalizing applications, such as “piezoelectric nanocomposites without using piezoelectric materials.” The second issue concerns electromechanical effects at the dielectric/metal interface. An interface in solids typically exhibits a lower symmetry compared to that of the associated adhering materials. This symmetry reduction can drastically affect the electromechanical and dielectric behavior of the material at the nanoscale.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Junquera, P. Ghosez, Nature 422, 506 (2003); N. Sai, A.M. Kolpak, A.M. Rappe, Phys. Rev. B 72, 020101 (2005).

    Google Scholar 

  2. X. Wu, M. Stengel, K.M. Rabe, D. Vanderbilt, Phys. Rev. Lett. 101, 087601 (2008).

    Google Scholar 

  3. P. Aguado-Puente, J. Junquera, Phys. Rev. Lett. 100, 177601 (2008).

    Google Scholar 

  4. B. Meyer, D. Vanderbilt, Phys. Rev. B 65, 104111 (2002).

    Google Scholar 

  5. J. Junquera, P. Ghosez, J. Comput. Theor. Nanoscience 5, 2071 (2008).

    Google Scholar 

  6. J.F. Nye, Physical Properties of Crystals: Their Representation by Tensors and Matrices (Oxford University Press, Oxford, 2004).

    Google Scholar 

  7. J. Fousek, L.E. Cross, D.B. Litvin, Mater. Lett. 39, 287 (1999); A.K. Tagantsev, G. Gerra, N. Setter, Phys. Rev. B. 77, 174111 (2008); R. Maranganti, N.D. Sharma, P. Sharma, Phys. Rev. B 74, 014110 (2006); A.K. Tagantsev, Phys. Rev. B 34, 5883 (1986).

    Google Scholar 

  8. A.K. Tagantsev, Phase Transitions 35, 119 (1991).

    Google Scholar 

  9. L.E. Cross, J. Mater. Sci. 41, 53 (2006).

    Google Scholar 

  10. N.D. Sharma, R. Maranganti, P. Sharma, J. Mech. Phys. Solids 55, 2328 (2007).

    Google Scholar 

  11. J.Y. Fu, W.Y. Zhu, N. Li, L.E. Cross, J. Appl. Phys. 100, 024112 (2006); W.H. Ma, L.E. Cross, Appl. Phys. Lett. 88, 232902 (2006).

    Google Scholar 

  12. J.Y. Fu, W.Y. Zhu, N. Li, N.B. Smith, L.E. Cross, Appl. Phys. Lett. 91, 182910 (2007).

    Google Scholar 

  13. M.S. Majdoub, P. Sharma, T. Cagin, Phys. Rev. B 77, 125424 (2008); M.S. Majdoub, P. Sharma, T. Cagin, Phys. Rev. B, 79, 119904 (2009).

    Google Scholar 

  14. S.M. Kogan, Fiz. Tverd. Tela Leningrad 5, 2829 (1963).

    Google Scholar 

  15. P. Zubko, G. Catalan, A. Buckley, P.R.L. Welche, J.F. Scott, Phys. Rev. Lett. 99, 167601 (2007).

    Google Scholar 

  16. A. Kholkin, I. Bdikin, T. Ostapchuk, J. Petzelt, Appl. Phys. Lett. 93, 222905 (2008).

    Google Scholar 

  17. R. Maranganti, P. Sharma, Phys. Rev. B: arXiv:0903.0684v1; A. Askar, P.C.Y. Lee, A.S. Cakmak, Phys. Rev. B 1, 3525 (1970).

    Google Scholar 

  18. T. Dumitrica, C.M. Landis, B.I. Yakobson, Chem. Phys. Lett. 360, 182 (2002).

    Google Scholar 

  19. S.V. Kalinin, V. Meunier, Phys. Rev. B 77, 033403 (2008).

    Google Scholar 

  20. I. Naumov, A.M. Bratkovsky, V. Ranjan, http://arxiv.org/abs/0810.1775 (2008).

  21. A.G. Petrov, Biochim. Biophys. Acta 1561, 1 (2002).

    Google Scholar 

  22. A.P. Levanyuk, S.A. Minyukov, Fiz. Tverd. Tela 25, 2617 (1983).

    Google Scholar 

  23. A.M. Bratkovsky, A.P. Levanyuk, Phys. Rev. Lett. 94, 107601 (2005).

    Google Scholar 

  24. M.D. Glinchuk, A.N. Morozovska, J. Phys.: Condens. Matter 16, 3517 (2004).

    Google Scholar 

  25. G. Gerra, A.K. Tagantsev, N. Setter, Phys. Rev. Lett. 98, 207601 (2007); G. Gerra, A.K. Tagantsev, N. Setter, Phys. Rev. Lett. 99, 029901 (2007).

    Google Scholar 

  26. G. Gerra, A.K. Tagantsev, N. Setter, Phys. Rev. Lett. 94, 107602 (2005).

    Google Scholar 

  27. G. Gerra, A.K. Tagantsev, N. Setter, K. Parlinski, Phys. Rev. Lett. 96, 107603 (2006); G. Gerra, A.K. Tagantsev, N. Setter, K. Parlinski, Phys. Rev. Lett. 99, 169904 (2007).

    Google Scholar 

  28. M. Stengel, N.A. Spaldin, Nature 443, 679 (2006).

    Google Scholar 

  29. R.D. Mindlin, Int. J. Solids. Struct. 4, 637 (1968).

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tagantsev, A.K., Meunier, V. & Sharma, P. Novel Electromechanical Phenomena at the Nanoscale: Phenomenological Theory and Atomistic Modeling. MRS Bulletin 34, 643–647 (2009). https://doi.org/10.1557/mrs2009.175

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs2009.175

Navigation