Skip to main content
Log in

An Atom-Probe Tomography Primer

  • Technical Feature
  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

Atom-probe tomography (APT) is in the midst of a dynamic renaissance as a result of the development of well-engineered commercial instruments that are both robust and ergonomic and capable of collecting large data sets, hundreds of millions of atoms, in short time periods compared to their predecessor instruments. An APT setup involves a field-ion microscope coupled directly to a special time-of-flight (TOF) mass spectrometer that permits one to determine the mass-to-charge states of individual field-evaporated ions plus their x-, y-, and z-coordinates in a specimen in direct space with subnanoscale resolution. The three-dimensional (3D) data sets acquired are analyzed using increasingly sophisticated software programs that utilize high-end workstations, which permit one to handle continuously increasing large data sets. APT has the unique ability to dissect a lattice, with subnanometer-scale spatial resolution, using either voltage or laser pulses, on an atom-by-atom and atomic plane-by-plane basis and to reconstruct it in 3D with the chemical identity of each detected atom identified by TOF mass spectrometry. Employing pico- or femtosecond laser pulses using visible (green or blue light) to ultraviolet light makes the analysis of metallic, semiconducting, ceramic, and organic materials practical to different degrees of success. The utilization of dual-beam focused ion-beam microscopy for the preparation of microtip specimens from multilayer and surface films, semiconductor devices, and for producing site-specific specimens greatly extends the capabilities of APT to a wider range of scientific and engineering problems than could previously be studied for a wide range of materials: metals, semiconductors, ceramics, biominerals, and organic materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D.N. Seidman, Rev. Sci. Instrum. 78, 030901 (2007).

    Google Scholar 

  2. K. Thompson, D.J. Lawrence, D.J. Larson, J.D. Olson, T.F. Kelly, B.P. Gorman, Ultramicroscopy 107, 131 (2007).

    Google Scholar 

  3. E.W. Müller, T.T. Tsong, Field Ion Microscopy (American Elsevier Publishing Company, New York, 1969).

    Google Scholar 

  4. J.R. Oppenheimer, Phys. Rev. 31, 67 (1928).

    Google Scholar 

  5. M.G. Inghram, R. Gomer, J. Chem. Phys. 22, 1279 (1954).

    Google Scholar 

  6. M.G. Inghram, R. Gomer, Z. Naturforsch. 10a, 863 (1955).

    Google Scholar 

  7. E.W. Müller, K. Bahadur, Phys. Rev. 102, 624 (1956).

    Google Scholar 

  8. E.W. Müller, K. Bahadur, Phys. Rev. 99, 1651 (1955).

    Google Scholar 

  9. R. Gomer, Field Emission and Field Ionization (Harvard University Press, Cambridge, MA, 1961), pp. 64–102.

    Google Scholar 

  10. E.W. Müller, Phys. Rev. 102, 618 (1956).

    Google Scholar 

  11. R. Gomer, J. Chem. Phys. 31, 341 (1959).

    Google Scholar 

  12. R. Gomer, L.W. Swanson, J. Chem. Phys. 38, 1613 (1963).

    Google Scholar 

  13. D.G. Brandon, Surf. Sci. 3, 1 (1965).

    Google Scholar 

  14. E.W. Müller, J.A. Panitz, S.B. McLane, Rev. Sci. Instrum. 39, 83 (1968).

    Google Scholar 

  15. T.T. Tsong, Atom-Probe Field-Ion Microscopy (Cambridge University Press, Cambridge, MA, 1990).

    Google Scholar 

  16. E de Hoffmann, V. Stroubant, Mass Spectrometry (Wiley-Interscience, New York, 2007).

    Google Scholar 

  17. A. Cerezo, T.J. Godfrey, G.D.W. Smith, Rev. Sci. Instrum. 59, 862 (1988).

    Google Scholar 

  18. M.K. Miller, A. Cerezo, M.G. Hetherington, G.D.W. Smith, Atom Probe Field Ion Microscopy (Oxford University Press, Oxford, 1996).

    Google Scholar 

  19. D. Blavette, B. Deconihut, A. Bostel, J.M. Sarru, M. Bouet, A. Menand, Rev. Sci. Instrum. 64, 2911 (1993).

    Google Scholar 

  20. M.K. Miller, Atom Probe Tomography: Analysis at the Atomic Level (Kluwer Academic, Plenum Publishers, New York, 2000).

    Google Scholar 

  21. J.A. Panitz, J.A. Foesch, Rev. Sci. Instrum. 47, 44 (1976).

    Google Scholar 

  22. T.F. Kelly, P.P. Camus, D.J. Larson, L.M. Holzman, S.S. Bajikav, Ultramicroscopy 62, 29 (1996).

    Google Scholar 

  23. T.F. Kelly, D.J. Larson, Mater. Charact. 44, 59 (2000).

    Google Scholar 

  24. A.A. Gribb, T.F. Kelly, Adv. Mater. Proc. 162 (2), 31 (2004).

    Google Scholar 

  25. S.S.A. Gerstl, D.N. Seidman, A.A. Gribb, T.F. Kelly, Adv. Mater. Proc. 162 (10), 31 (2004).

    Google Scholar 

  26. K. Thompson, J.H. Bunton, T.F. Kelly, D.J. Larson, J. Vac. Sci. Technol., B 24 (1), 421 (2006).

  27. O. Nishikawa, M. Kimoto, Appl. Surf. Sci. 76 (1–4), 424 (1994).

    Google Scholar 

  28. G. da Costa, F. Vurpillot, A. Bostel, M. Bouet, B. Deconihout, Rev. Sci. Instrum. 76, 013304 (2005).

    Google Scholar 

  29. G.L. Kellogg, T.T. Tsong, J. Appl. Phys. 51, 1184 (1980).

    Google Scholar 

  30. B. Gault, F. Vurpillot, A. Bostel, A. Menand, B. Deconihout, Appl. Phys. Lett. 86, 094101 (2005).

    Google Scholar 

  31. A. Cerezo, G.D.W. Smith, P.H. Clifton, Appl. Phys. Lett. 88, 154103 (2006).

    Google Scholar 

  32. G.L. Kellogg, J. Appl. Phys. 52, 5320 (1981).

    Google Scholar 

  33. P. Panayi, Great Britain Patent Application GB2426120A (November 15, 2006).

  34. M.R. Scheinfein, D.N. Seidman, Rev. Sci. Instrum. 64, 3126 (1993).

    Google Scholar 

  35. D.N. Seidman, Annu. Rev. Mater. Res. 37, 127 (2007).

    Google Scholar 

  36. B.W. Krakauer, J.G. Hu, S.M. Kuo, R.L. Mallick, A. Seki, D.N. Seidman, J.P. Baker, R. Loyd, Rev. Sci. Instrum. 61, 3390 (1990).

    Google Scholar 

  37. B.W. Krakauer, D.N. Seidman, Rev. Sci. Instrum. 63, 4071 (1992).

    Google Scholar 

  38. A. Henjered, H. Nordén, J.Phys. E: Sci Instr. 16, 617 (1983).

    Google Scholar 

  39. L. Karlsson, H. Nordén, Acta Metall. 36 (1988).

  40. K. Stiller, Colloque Phys. C8, 329 (1989).

    Google Scholar 

  41. B.W. Krakauer, D.N. Seidman, Acta Mater. 46, 6145 (1998).

    Google Scholar 

  42. D.N. Seidman, Annu. Rev. Mater. Res. 32, 235 (2002).

    Google Scholar 

  43. R. Herschitz, D.N. Seidman, Surf. Sci. 130, 63 (1983).

    Google Scholar 

  44. D.A. Shashkov, D.N. Seidman, Phys. Rev. Lett. 75, 268 (1995).

    Google Scholar 

  45. M. Yamamoto, D.N. Seidman, Surf. Sci. 118, 535 (1982).

    Google Scholar 

  46. M. Yamamoto, D.N. Seidman, S. Nakamura, Surf. Sci. 118, 555 (1982).

    Google Scholar 

  47. L.A. Giannuzzi, F.S. Stevie, Micron 30, 197 (1999).

    Google Scholar 

  48. D.J. Larson, D.T. Foord, A.K. Petford-Long, H. Liew, M.G. Blamire, A. Cerezo, G.D.W. Smith, Ultramicroscopy 79, 287 (1999).

    Google Scholar 

  49. D.J. Larson, A.K. Petford-Long, Y.Q. Ma, A. Cerezo, Acta Mater. 52, 2847 (2004).

    Google Scholar 

  50. B. Gault, A. Menand, F. de Geuser, B. Deconihout, F. Danoix, Appl. Phys. Lett. 88, 114101 (2006).

    Google Scholar 

  51. M.K. Miller, K.F. Russell, K. Thompson, R. Alvis, D.J. Larson, Microsc. Microanal. 13 (6), 428 (2007).

    Google Scholar 

  52. Y.M. Chen, T. Ohkubo, M. Kodzuka, K. Morita, K. Hono, Scripta Mater. 61, 693–696 (2009).

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Seidman, D.N., Stiller, K. An Atom-Probe Tomography Primer. MRS Bulletin 34, 717–724 (2009). https://doi.org/10.1557/mrs2009.194

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs2009.194

Navigation