Skip to main content
Log in

Supplementary Cementitious Materials for Concrete: Characterization Needs

  • Published:
MRS Online Proceedings Library Aims and scope

Abstract

A wide variety of materials are currently used as supplementary cementitious materials (SCMs) for concrete, including natural materials and byproducts from various industries. Historically, natural SCMs, mostly derived from volcanic deposits, were common in concrete. In recent years, the dominant SCMs have been industrial by-products such as fly ash, ground granulated blast furnace slag (GGBFS), and silica fume. There is currently a resurgence of research into historic and natural SCMs, as well as other alternative SCMs for many reasons. The primary benefits of SCM use in improvement of long-term mechanical performance, durability, and sustainability are widely accepted, so local demand for these materials can exceed supply. This paper describes some of the SCMs that are attracting attention in the global research community and the properties and characteristics of these materials that affect their performance. Special attention is paid to the importance and demands of material characterization. Many SCMs do not necessarily lend themselves to characterization methods used in standardized test methods, which sometimes fail to describe the properties that are most important in predicting reactivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Van den Heede and N. De Belie, Cem. Concr. Comp. 34, 431 (2012).

    Article  CAS  Google Scholar 

  2. M. Schneider, M. Romer, M. Tschudin and H. Bolioc, Cem. Concr. Res. 41, 642 (2011).

    Article  CAS  Google Scholar 

  3. S.H. Kosmatka and M.L. Wilson, Design and Control of Concrete Mixtures, 15 th ed., (Port. Cem. Assoc., Skokie, IL, 2011).

    Google Scholar 

  4. K.L. Scrivener and R.J. Kirkpatrick, Cem. Concr. Res. 38, 128 (2008).

    Article  CAS  Google Scholar 

  5. CEMBUREAU, The European Cement Association Activity Report (2011).

    Google Scholar 

  6. K. Scrivener, Am. Ceram. Soc. Bull. 91 (5) 47–50 (2012).

    Google Scholar 

  7. V.M. Malhotra, Concr. Int. 28 (9) 42 (2006).

    CAS  Google Scholar 

  8. S. Reynolds, The Future of Ferrous Slag, Market Forecasts to 2020, (Pira International Ltd, Leatherhead, UK, 2009).

    Google Scholar 

  9. J.S. Damtoft, J. Lukasik, D. Herfort, D. Sorrentino and E.M. Gartner, Cem. Concr. Res. 38, 115 (2008).

    Article  CAS  Google Scholar 

  10. K.L Scrivener, and A. Nonat, Cem. Concr. Res. 41, 651 (2011).

    Article  CAS  Google Scholar 

  11. R.E. Davis, R.W. Carlson, J.W. Kelly and H.E. Davis, J. Am. Concrete. Inst. 33, 577 (1937).

    Google Scholar 

  12. N. Bouzoubaâ, M.H. Zhang, V.M. Malhotra and D.M. Golden, ACI Mater. J. 96, 641 (1999).

    Google Scholar 

  13. N. Bouzoubaâ and M. Lachemi, Cem. Concr. Res. 31, 413 (2001).

    Article  Google Scholar 

  14. H. Yazıcı, S. Aydın, H. Yiğiter and B. Baradan, Cem. Concr. Res. 35, 1122 (2005).

    Article  CAS  Google Scholar 

  15. S. Schlorholtz, T. Demirel and J.M. Pitt, Cem. Concr. Res. 14, 499 (1984).

    Article  CAS  Google Scholar 

  16. D. Cross, J. Stephens and J. Vollmer, (World of Coal Ash, Lexington, KY 2005).

  17. R.T. Hemmings and E.E. Berry, in Fly Ash and Coal Conversion By-Products: Characterization, Utilization, and Disposal IV, edited by G.J. McCarthy, F.P. Glasser, D.M. Roy (Mater. Res. Soc. Symp. Proc 113, Warrendale, PA, 1988), pp. 3–38.

  18. J.C. Qian, E.E. Lachowski and F.P. Glasser, in Fly Ash and Coal Conversion By-Products: Characterization, Utilization, and Disposal IV, edited by G.J. McCarthy, F.P. Glasser, D.M. Roy (Mater. Res. Soc. Symp. Proc 113, Warrendale, PA, 1988), pp. 45–54

    Article  CAS  Google Scholar 

  19. J.H. Brindle and M.J. McCarthy, Energ. Fuel 20, 2580 (2006).

    Article  CAS  Google Scholar 

  20. C.R. Ward and D. French, Fuel 85, 2268 (2006).

    Article  CAS  Google Scholar 

  21. CUAP “Fly Ash for Concrete” (annexe B) (2006) (ETA request No. 0301/34)

    Google Scholar 

  22. I. Odler, Special inorganic cements (E&FN Spon, Taylor& Francis Group, London, 2000).

    Google Scholar 

  23. M.P. Luxán, M.I. Sánchez de Rojas and M. Frías, Cem. Concr. Res. 19, 69 (1989).

    Article  Google Scholar 

  24. B. Mather, Cem. Concr. Res. 14, 887 (1984).

    Article  CAS  Google Scholar 

  25. R.L. Hill, S.L. Sarkar, R.F. Rathbone and J.C. Hower, Cem. Concr. Res. 27, 193 (1997).

    Article  CAS  Google Scholar 

  26. K.H. Pedersen, A.D. Jensen and K. Dam-Johansen, Combust. Flame 157 (2) 208 (2010).

    Article  CAS  Google Scholar 

  27. S. Wang, A. Miller, E. Llamazos, F. Fonseca and L. Baxter, Fuel 87, 365 (2008).

    Article  CAS  Google Scholar 

  28. A. Johnson, L.J.J. Catalan and S.D. Kinrade, Fuel 89, 3042 (2010).

    Article  CAS  Google Scholar 

  29. P. Duxson and J.L. Provis, J. Am. Ceram. Soc. 91, 3864 (2008).

    Article  CAS  Google Scholar 

  30. S. Diamond, Cem. Concr. Res. 13, 459 (1983).

    Article  CAS  Google Scholar 

  31. R.T. Chancey, P. Stutzman, M.C.G. Juenger and D.W. Fowler, Cem. Concr. Res. 40, 146 (2010).

    Article  CAS  Google Scholar 

  32. H.S. Pietersen, A.L.A. Fraay and J.M. Bijen, in Fly Ash and Coal Conversion By-Products VI, edited by R.L. Day and F.P. Glasser (Mater. Res. Soc. Symp. Proc. 178, Boston, MA, 1989) pp. 139–157.

  33. H.J.H. Brouwers and R.J. van Eijk, J. Mater.Sci. 37, 2129 (2002).

    Article  CAS  Google Scholar 

  34. J.L. Provis and J.S.J. van Deventer, Chem. Eng. Sci. 62, 2318 (2007).

    Article  CAS  Google Scholar 

  35. G. Baert, N. De Belie and G. De Schutter, J. Mater. Civil Eng. 23, 761 (2011).

    Article  CAS  Google Scholar 

  36. R.D. Hooton, Supplementary Cementing Materials, edited by V.M. Malhotra (CANMET 1987) p. 247.

  37. F. Schröder, Proceedings of the Fifth International Symposium on the Chemistry of Cement, (Tokyo, 1968) vol. IV, p. 149.

  38. H. Kollo and J. Geiseler, Beton-Informationen, 4, 48 (1987).

    Google Scholar 

  39. H. Kollo, Beton-Informationen 31, 22 (1991).

    Google Scholar 

  40. H.G. Smolczyk, Zement-Kalk-Gips 31 (6), 294 (1978).

    CAS  Google Scholar 

  41. E. Olbrich, Struktur und Reaktionsfähigkeit von Hüttensandglas, (PhD Thesis, TU Clausthal, Germany 1999).

    Google Scholar 

  42. L. Tetmajer, Stahl und Eisen, 6, 473 (1886).

    Google Scholar 

  43. J.C. De Langavant, Revue des Matériaux de Construction et de Traveaux Publics, 401, 381 (1949).

    Google Scholar 

  44. S.-D. Wang, K.L. Scrivener, and P.L. Pratt, Cem. Concr. Res. 24, 1033 (1994).

    Article  CAS  Google Scholar 

  45. F. Schröder, Tonmineralogie-Zeitung, 85, (2/3), 39 (1961).

    Google Scholar 

  46. R.D. Hooton, and J.J. Emery, Proceedings, First International Conference on the Use of Fly Ash, Silica Fume, Slag and Other Mineral By-Products in Concrete, (ACI SP79, vol. 2, Montebello, Quebec, 1983) p. 943.

  47. W. Matthes, Holcim Group Support Ltd. (private communication).

  48. O. Farkas, Freiberger Forschungshefte, Reihe B, 106, 43 (1951).

    Google Scholar 

  49. J.O.M. Bockris and J.D. Kitchener, T. Faraday Soc., 51, 1734 (1955).

    Article  CAS  Google Scholar 

  50. F. Keil, Hochofenschlacke, 2 nd edition, (Verlag Stahleisen M.B.H., Düsseldorf 1963).

    Google Scholar 

  51. E. Demoulian, P. Gourdin, F. Hawthorn and C. Vernet, Proceedings of the Seventh International Congress on the Chemistry of Cement, 2(III) (Paris, 1980) p. 89.

  52. G. Frigione, Blended Cements, (ASTM STP 897, 1986) p. 15.

    Article  CAS  Google Scholar 

  53. W. Wassing, Cement I., 5, 94 (2003).

    Google Scholar 

  54. M. Regourd, J.H. Thomassin, P. Baillif and J.C. Touray, Cem. Concr. Res. 13, 549 (1983).

    Article  CAS  Google Scholar 

  55. R. Dron and F. Brivot Proceedings of the Seventh International Conference of Cement and Concrete, 2, III (Paris, 1980) p. 134.

  56. P. Javelle, Cent. Doc. Siderurg., Circ. Inform. Tech., 26 (3) 689 (1969).

    CAS  Google Scholar 

  57. H.E. Schwiete and F.C. Dölbor, Forschungsberichte des Landes Nordrhein-Westfahlen, Deutschland, Nr. 1186, (1963) 119 pp.

    Google Scholar 

  58. K. Grade, Proceedings of the Fifth International Symposium on the Chemistry of Cement, 4, (Tokyo, 1968), p. 168.

  59. Kocaba. V, Gallucci E., Scrivener K. (2012) Methods for determination of degree of reaction of slag in blended cement pastes Cement and Concrete Research, Volume 42, Issue 3, Pages 511–525

    CAS  Google Scholar 

  60. Taylor H.F.W. (1992) Cement Chemistry, Academic Press Ltd., London, 2nd printing, 475 pp.

    Google Scholar 

  61. Poulsen S.L., Jacobson H.J., Skibsted J (2009) Methodologies for measuring the degree of hydration in Portland cement blends with Supplementary Cementitious Materials by 27Al and 29Si MAS NMR Spectroscopy, Proc. 17th Ibausil, Weimar, Germany, 1, 177–188

  62. R.D. Hooton, Can. J. Civil Eng., 27, 754 (2000).

    Article  Google Scholar 

  63. ACI 234R-06, “Guide for the Use of Silica Fume in Concrete,” ACI Manual of Concrete Practice. (ACI 2006).

  64. P. Fidjestol, Elkem Materials (private communication).

  65. B. Nebesar and G.G. Carette, Cem. Concr. Aggr. 8, 42 (1986).

    Article  CAS  Google Scholar 

  66. P.C. Aïtcin, P. Pinsonneault, and D.M. Roy, Ceram. Bull., 63, 1487 (1984).

    Google Scholar 

  67. K. Popovic, V. Ukraincik, and A. Djurekovic, Durability Build. Mater., 2 (2) 171 (1984).

    CAS  Google Scholar 

  68. V.M. Malhotra, V.S. Ramachandran, R.F. Feldman, and P.C. Aïtcin, Condensed Silica Fume in Concrete, (CRC Press, Inc., Boca Raton, FL, 1987).

    Google Scholar 

  69. G.W. Brindley and M. Nakahira, J.Am. Ceram. Soc. 42 (7), 311 (1959).

    Article  CAS  Google Scholar 

  70. B.B. Sabir, S. Wild and J. Bai, Cem. Concr. Comp. 23(6), 441 (2001).

    Article  CAS  Google Scholar 

  71. B. Lothenbach, K. Scrivener and R.D. Hooton, Cem. Concr. Res. 41, 1244 (2011).

    Article  CAS  Google Scholar 

  72. D.R. Collins, A.N. Fitch and C.R.A. Catlow, J. Mater. Chem. 1 (6), 965 (1991).

    Article  CAS  Google Scholar 

  73. S. Lee, Y.J. Kim and H.S. Moon, J. Am. Ceram. Soc. 86 (1), 174 (2003).

    Article  CAS  Google Scholar 

  74. C.E. White, J.L. Provis, T. Proffen, D.P. Riley and J.S.J. van Deventer, Phys. Chem. Chem. Phys. 12 (13), 3239 (2010).

    Article  CAS  Google Scholar 

  75. C.E. White, J.L. Provis, T. Proffen, D.P. Riley and J.S.J. van Deventer, J. Phys. Chem. A 114 (14) 4988 (2010).

    Article  CAS  Google Scholar 

  76. R. Fernandez, F. Martirena and K.L. Scrivener, Cem. Concr. Res. 41, 113 (2011).

    Article  CAS  Google Scholar 

  77. J. Ambroise, M. Murat, and J. Pera, Cem. Concr. Res. 15, 261 (1985).

    Article  CAS  Google Scholar 

  78. C. He, B. Osbaeck and E. Makovicky, Cem. Concr. Res. 25, 1691 (1995).

    Article  CAS  Google Scholar 

  79. C. He, E. Makovicky and B. Osbæck, Appl. Clay Sci. 17, 141 (2000)

    Article  CAS  Google Scholar 

  80. G. Habert, N. Choupay, G. Escadeillas, D. Guillaume and J.M. Montel, Appl. Clay Sci. 43 322 (2009).

    Article  CAS  Google Scholar 

  81. A. Tironi, M.A. Trezza, A.N. Scian and E.F. Irassar, Const. Build. Mat. 28, 276 (2012).

    Article  Google Scholar 

  82. M.G. Idorn, Concrete Progress from Antiquity to the Third Millenium (Telford, London 1997).

    Book  Google Scholar 

  83. D.J. Cook, in Cement Replacement Materials, edited by R.N. Swamy (Surrey University Press, London 1986) p 1–39.

  84. V.M. Malhotra and P.K. Mehta, Pozzolanic and Cementitious Materials (Taylor & Francis 1996).

    Google Scholar 

  85. C. Colella, M. de Gennaro, and R. Aiello, Rev. Mineral Geochem. 45, 551 (2001).

    Article  CAS  Google Scholar 

  86. F. Massazza, in Lea’s Chemistry of Cement and Concrete. Edited by P.C. Hewlett (Butterworth-Heinemann, Oxford 2001) p 471–636.

  87. F. Massazza, in Structure and Performance of Cements, 2 nd ed., edited by J. Bensted and P. Barnes P (Spon Press, London 2002) p 326–352.

  88. R. Snellings, G. Mertens and J. Elsen, Rev. Min. Geoch. 74, 211 (2012).

    Article  CAS  Google Scholar 

  89. U. Ludwig and H.E. Schwiete, Zem-Kalk-Gips 10, 421 (1963).

    Google Scholar 

  90. B. Mortureux, H. Hornain, E. Gautier and M. Regourd, Proc 7th Int Cong Chem Cement IV:110–115 (1980).

    Google Scholar 

  91. R.C. Mielenz, L.P. White and O.J. Glantz, in Symposium on the Use of Pozzolanic Materials in Mortars and Concrete. ASTM Special Technical Publication 99, 43 (1950)

  92. M.S. Akman, F. Mazlum and F. Esenli, Comparative study of natural pozzolans used in blended cement production. ACI Special Publication 132, 471 (1992).

    Google Scholar 

  93. P.K. Mehta, Natural pozzolans: Supplementary cementing materials for concrete. CANMET Special Publication 86, 1 (1987).

    Google Scholar 

  94. D.S. Kosson, H.A. van der Sloot, and T.T. Eighmy, J. Haz. Mater. 47, 43 (1996)

    Article  CAS  Google Scholar 

  95. L. Bertolini, M. Carsana, D. Cassago, A.Q. Curzio and M. Collepardi, Cem. Concr. Res. 34, 1899 (2004).

    Article  CAS  Google Scholar 

  96. C.H.K. Lam, A.W.M. Ip, J.P. Barford and G. McKay, Sustainability 2, 1943 (2010).

    Article  CAS  Google Scholar 

  97. M. Keppert, Z. Pavlík, R. Černý and P. Reiterman, IACSIT Coimbatore Conferences IPCSIT vol. 28 (IACSIT Press, Singapore, 2012) pp. 127–131.

  98. G. Boghetich, L. Liberti, M. Notarnicola, M. Palma and D. Petruzzelli, Waste Manag. Res., 23, 57 (2005).

    Article  CAS  Google Scholar 

  99. J. Pera, L. Coutaz, J. Ambroise, and M. Chababbet, Cem. Concr. Res. 27 (1), 1 (1997).

    Article  CAS  Google Scholar 

  100. J.E. Aubert, B. Husson, A. Vaquier: Use of municipal solid waste incineration fly ash in concrete, Cem. Concr. Res. 34, 957 (2004).

    Article  CAS  Google Scholar 

  101. R. Ito, G. Dodbiba, T. Fujita, J.W. Ahn, Waste Manag. 28: 1317 (2008).

    Article  CAS  Google Scholar 

  102. G. Escadeillas Cement modified with limestone fillers: optimization by means of mechanical and physical properties, Doctoral thesis (in French) (Université de Toulouse, 1988).

    Google Scholar 

  103. L. Courard, R. Degeimbre, A. Darimont, F. Michel, X. Willem and St. Flamant, in ConMat’05 Third International Conference on construction materials: performance, innovations and structural implications, Theme 3-Chapter 5, (Vancouver, Canada, 2005).

  104. P. Hawkins, P. Tennis, R. Detwiler, The Use of Limestone in Portland Cement: A State-of-the-art Review (Portland Cement Association, Skokie, IL 2003).

    Google Scholar 

  105. T. Matschei, B. Lothenbach, F.P. Glasser, Cem. Concr. Res. 37, 551 (2007).

    Article  CAS  Google Scholar 

  106. B. Lothenbach, G. Le Saout, E. Gallucci, and K. Scrivener, Cem. Concr. Res. 38, 848 (2008).

    Article  CAS  Google Scholar 

  107. F. Michel, Physical characterization of limestone fillers, Master’s Thesis (in French) (Université de Liège, Belgium 2006).

    Google Scholar 

  108. F. Michel, J. Pierard, L. Courard and V. Pollet, in 5th International RILEM Symposium on Self-Compacting Concrete Proceedings PRO 54, edited by G. De Schutter and V. Boel (Rilem Publications, Gent, Belgium 2007) p. 205–210.

  109. E. Pirard, N. Vergara and V. Chapeau, in Proceedings of International congress for particle technology (Nuremberg, Gemany 2004).

  110. H. He, L. Courard, F. Michel and E. Pirard, in Recueil des communications des journees scientifiques du (RF)2B: 26–35 (in French) (2012).

Download references

Acknowledgements

This work is an outcome of the committee work of the members of RILEM TC-SCM WG1, a working group on the characterization of supplementary cementitious materials. Members of the committee are thanked for their ideas and contributions. Funding for M. Juenger’s work on SCMs has been provided by the U.S. National Science Foundation (CMMI- 1030972) and the Texas Department of Transportation (project 0-6717). Work performed by H. He, F. Michel and L. Courard on limestone fillers was founded by Post-Doc Grant of Université de Liège and CEMCALC research project (Wallonia Grant).

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Juenger, M., Provis, J.L., Elsen, J. et al. Supplementary Cementitious Materials for Concrete: Characterization Needs. MRS Online Proceedings Library 1488, 8–22 (2012). https://doi.org/10.1557/opl.2012.1536

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/opl.2012.1536

Navigation