Skip to main content
Log in

Radiation Growth of HCP Metals under Cascade Damage Conditions

  • Published:
MRS Online Proceedings Library Aims and scope

Abstract

Models of radiation growth proposed to date are all based on the assumption that the primary damage is produced by neutron irradiation in the form of single defects. These models do not account for the features of the cascade damage: intra-cascade clustering of self-interstitial atoms (SIAs) and their one-dimensional diffusion. During the last twenty years, a ‘Production Bias Model’ has been developed, which shows that the damage accumulation in cubic metals depends crucially on the cascade properties. The cascades in hcp zirconium are similar to those in cubic crystals; hence the model can provide a realistic framework for the hcp metals as well. In this work we present such a model in application to low-temperature (below 300°C) radiation growth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. S.N. Buckley, Properties of Reactor Materials and Effects of Radiation Damage, ed. W.J. Littler (Butterworths, London, 1962) p. 413.

  2. R.A. Holt, J. Nucl. Mater. 372, 182 (2008).

    Article  CAS  Google Scholar 

  3. S.J. Wooding, L.M. Howe, F. Gao, A.F. Calder, and D.J. Bacon, J. Nucl. Mater. 254, 191 (1998).

    Article  CAS  Google Scholar 

  4. N. De Diego, Y.N. Osetsky, and D.J. Bacon, In: Proceedings of MRS Fall Meeting; Boston, MA; USA; (2000) p. 200.

    Google Scholar 

  5. R.A. Holt, C.H. Woo, and C.K. Chow, J. Nucl. Mater. 205, 293 (1993).

    Article  CAS  Google Scholar 

  6. S.I. Golubov, B.N. Singh, and H. Trinkaus, Phil. Mag. A81, 2533 (2001).

    Article  CAS  Google Scholar 

  7. G.P. Walters, J. Nucl. Mater. 136, 263 (1985).

    Article  CAS  Google Scholar 

  8. W.G. Wolfer, Computer-Aided Mater. Des. 14, 403 (2007).

    Article  CAS  Google Scholar 

  9. A.V. Barashev, and S.I. Golubov, Phil. Mag. 89, 2833 (2009).

    Article  CAS  Google Scholar 

  10. B.N. Singh, S.I. Golubov, H. Trinkaus, A. Serra, Yu.N. Osetsky, and A.V. Barashev, J. Nucl. Mater. 251, 107 (1997).

    Article  CAS  Google Scholar 

  11. S.I. Golubov, A.V. Barashev, and R.E. Stoller. “Mean Field Reaction Rate Theory”, In: Encyclopedia of Comprehensive Nuclear Materials, Chapter 1.13, edited by Rudy Konings, Elsevier Ltd. (2012).

  12. Y. de Carlan, C. Regnard, M. Griffiths, D. Gilbon, and C. Lemaignan, ASTM STP 1295, 638 (1996).

    Google Scholar 

  13. M. Griffiths, R.A. Holt, and A. Rogerson, J. Nucl. Mater. 225, 245 (1995).

    Article  CAS  Google Scholar 

  14. S.I. Golubov, A.V. Barashev, and R.E. Stoller, ORNL Report ORNL/TM-2011/473 (2011), available online via http://www.osti.gov/bridge.

  15. R.A. Holt, and R.W. Gilbert, J. Nucl. Mater. 116, 127 (1983).

    Article  CAS  Google Scholar 

  16. M. Griffiths, J. Nucl. Mater. 159, 190 (1988).

    Article  CAS  Google Scholar 

  17. R. Risbet, and V. Levy, J. Nucl. Mater. 50, 116 (1974).

    Article  CAS  Google Scholar 

  18. A.V. Barashev, and S.I. Golubov, Phil. Mag. 90, 1787 (2010).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Golubov, S.I., Barashev, A.V. & Stoller, R.E. Radiation Growth of HCP Metals under Cascade Damage Conditions. MRS Online Proceedings Library 1383, 55–60 (2011). https://doi.org/10.1557/opl.2012.242

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/opl.2012.242

Navigation