Skip to main content
Log in

Microfluidic Channel Fabrication in Dry Film Resist for Droplet Generation

  • Published:
MRS Online Proceedings Library Aims and scope

Abstract

Dry film resist has been used in the fabrication of Masters in microfluidic devices for droplet generation. The minimum feature size in the resist was controlled by the type of mask (transparency or electron beam Cr mask), the resolution of the pattern in transparency masks (2400 or 5080 dpi) and thickness of resist in the range from 35 to 140 μm. The Master patterns formed in dry resist were replicated as a Ni shim and then hot embossed into Plexiglas 99524. These devices were used to generate water-in-oil droplets with a well defined dependence of diameter and frequency on flow parameters. The application of dry laminar resist and transparency masks has allowed the rapid fabrication of prototype devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Huebner, S. Sharma, M. Srisa-Art, F. Hollfelder, J.B. Ebel, and A.J. deMello, Lab Chip 8, 1244 (2008).

    Article  CAS  Google Scholar 

  2. M. Joanicot and A. Ajdari, Science 309, 887 (2005).

    Article  CAS  Google Scholar 

  3. G.F. Christopher and S.L. Anna, J.Phys D:Appl.Phys. 40, R319 (2007).

    Article  CAS  Google Scholar 

  4. J.R. Millman, K.H. Bhatt, B.G. Prevo and O.D. Velev, Nature Materials 4, 98 (2004).

    Article  Google Scholar 

  5. O.J. Miller, K. Bernath, J.J. Agresti, G. Amitai, B.T. Kelly, E. Mastrobattista, V. Tally, S. Magdassi, D.S. Tawfik and A.D. Griffiths, Nature Methods 3(7), 561 (2006).

    Article  CAS  Google Scholar 

  6. W-L. Ong, J. Hua, B. Zhang, T-Y. Teo, J. Zhuo, N-T. Nguyen, N. Ranganathan and L. Yobas, Sensors and Actuators A138 203 (2007).

    Article  Google Scholar 

  7. F. Courtois, L.F. Olguin, G. Whyte, D. Bratton, W.T.S. Huck, C. Abell and F. Hollfelder, ChemBiochem 9, 439 (2008).

    Article  CAS  Google Scholar 

  8. L.M. Fidalgo, G. Whyte, D. Bratton, C.F. Kaminski, C. Abell and W.T.S. Huck, Angew.Chem.Int.Ed. 47, 2042 (2008).

    Article  CAS  Google Scholar 

  9. H. Lorenz, L. Paratte, R. Luthier, N.F. de Rooij and P. Renaud, Sensors and Actuators A53, 364 (1996).

    Article  Google Scholar 

  10. K. Stephan, P. Pittet, L. Renaud, P. Kleimann, P. Morin, K. Ouaini and R. Ferrigno, J. Micromech. Microeng. 17 N69 (2007).

    Article  CAS  Google Scholar 

  11. Y-C. Tsai, H-P. Jen, K-W. Lin and Y-Z. Hsieh, Journal of Chromatography A 1111, 267 (2006).

    Article  CAS  Google Scholar 

  12. P. Vulto, N. Glade, L. Altomare, J. Bablet, L. Del Tin, G. Medoro, I. Chartier, N. Manaresi, M. Tartagni and R. Guerrieri, Lab Chip 5 158 (2005).

    Article  CAS  Google Scholar 

  13. A. Piruska, I. Nikcevik, S.H. Lee, C. Ahn, W.R. Heinman, P.A. Limbach and C.J. Seliskar, Lab Chip. 5 1348 (2005).

    Article  CAS  Google Scholar 

  14. S. Zhao, H. Cong and T. Pan Lab Chip. DOI: 10.1039/b817925e (2009).

    Google Scholar 

Download references

Acknowledgments

Ni shims were produced by F. Glenn and B. Sexton.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Leech, P.W., Wu, N. & Zhu, Y. Microfluidic Channel Fabrication in Dry Film Resist for Droplet Generation. MRS Online Proceedings Library 1191, 0410 (2009). https://doi.org/10.1557/PROC-1191-OO04-10

Download citation

  • Published:

  • DOI: https://doi.org/10.1557/PROC-1191-OO04-10

Navigation