Skip to main content
Log in

Carbon Nanomaterials in Silica Aerogel Matrices

  • Published:
MRS Online Proceedings Library Aims and scope

Abstract

Silica aerogels are ultra low-density, high surface area materials that are extremely good thermal insulators and have numerous technical applications. However, their mechanical properties are not ideal, as they are brittle and prone to shattering. Conversely, single-walled carbon nanotubes (SWNTs) and graphene-based materials, such as graphene oxide, have extremely high tensile strength and possess novel electronic properties. By introducing SWNTs or graphene-based materials into aerogel matrices, it is possible to produce composites with the desirable properties of both constituents. We have successfully dispersed SWNTs and graphene-based materials into silica gels. Subsequent supercritical drying results in monolithic low-density composites having improved mechanical properties. These nanocomposite aerogels have great potential for use in a wide range of applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Fricke and T. Tillotson, Thin Solid Films 297, 212 (1997).

    Article  CAS  Google Scholar 

  2. A. C. Pierre and G. M. Pajonk, Chem. Rev. 102, 4243 (2002).

    Article  CAS  Google Scholar 

  3. C. A. M. Mulder, J. G. Van Lierop, and G. Frens, J. Non-Cryst. Solids 82, 92 (1986).

    Article  CAS  Google Scholar 

  4. N. Leventis, C. Sotiriou-Leventis, G. Zhang, and A.-M. M. Rawashdeh, Nano Lett. 2, 957 (2002).

    Article  CAS  Google Scholar 

  5. D. J. Boday, K. A. DeFriend, K. V. Wilson, D. Coder, and D. A. Loy, Chem. Mater. 20, 2845 (2008).

    Article  CAS  Google Scholar 

  6. M. A. B. Meador, S. L. Vivod, L. McCorkle, D. Quade, R. M. Sullivan, L. J. Ghosn, N. Clark, and L. A. Capadona, J. Mater. Chem. 18, 1843 (2008).

    Article  CAS  Google Scholar 

  7. M. B. Bryning, D. E. Milkie, M. F. Islam, L. A. Hough, J. M. Kikkawa, and A. G. Yodh, Adv. Mater. 19, 661 (2007).

    Article  CAS  Google Scholar 

  8. B. K. Price, J. R. Lomeda, and J. M. Tour, Chem. Mater. 21, 3917 (2009).

    Article  CAS  Google Scholar 

  9. W. S. Hummers and R. E. Offeman, J. Am. Chem. Soc. 80, 1339 (1958).

    Article  CAS  Google Scholar 

  10. A. Lerf, H. He, M. Forster, and J. Klinowski, J. Phys. Chem. B 102, 4477 (1998).

    Article  CAS  Google Scholar 

  11. D. J. Boday, R. J. Stover, B. Muriithi, M. W. Keller, J. T. Wertz, K. A. DeFriend Obrey, and D. A. Loy, ACS Appl. Mater. Interfaces 1, 1364 (2009).

    Article  CAS  Google Scholar 

  12. M. J. McAllister, J.-L. Li, D. H. Adamson, H. C. Schniepp, A. A. Abdala, J. Liu, M. Herrera-Alonso, D. L. Milius, R. Car, R. K. Prud’homme, and I. A. Aksay, Chem. Mater. 19, 4396 (2007).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hamilton, C.E., Chavez, M.E., Duque, J.G. et al. Carbon Nanomaterials in Silica Aerogel Matrices. MRS Online Proceedings Library 1258, 511 (2010). https://doi.org/10.1557/PROC-1258-R05-11

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1557/PROC-1258-R05-11

Navigation