Skip to main content
Log in

Effect of heating temperature and cooling rate on the microstructure and mechanical properties of a Mo-rich two phase α + β titanium alloy

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

In this work, influence of heating temperature and cooling rate on microstructure and mechanical properties of a Ti–6Al–1V–4Mo–Si alloy was investigated. The samples were heated to β (1020 °C) and α + β (950 °C and 850 °C) phase field followed by furnace cooling, air cooling and oil quenching. Basketweave morphology was witnessed for samples furnace cooled from β phase field, while Widmanstatten microstructure was observed for most air-cooled samples. For samples oil quenched from β phase field, HCP martensite (αʹ) was formed, while for samples heated in α + β phase field, lamellar α with α′ was observed. Oil quenching from the β phase field resulted in high strength and low elongation. The strength decreased and elongation increased with reduction in the heating temperature. Highest elongation (~ 16%) was obtained for samples heated to 850 °C followed by furnace cooling. The elastic modulus displayed a wide range of values (70–150 GPa) depending on the processing conditions.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  1. R.J. Contieri, M. Zanotello, R. Caram, Recrystallization and grain growth in highly cold worked CP-Titanium. Mater. Sci. Eng. A 527(16–17), 3994 (2010)

    Article  CAS  Google Scholar 

  2. I. Weiss, S.L. Semiatin, Thermomechanical processing of beta titanium alloys—an overview. Mater. Sci. Eng. 243, 46 (1998)

    Article  Google Scholar 

  3. D. Xue, Y. Jiao, W. He, X. Shen, Y. Gao, L. Wang, Investigations into the improvement of the mechanical properties of Ti-5Al-4Mo-4Cr-2Sn-2Zr titanium alloy by using low energy laser peening without coating. Materials (Basel) 13(6), 1 (2020)

    Article  CAS  Google Scholar 

  4. G. Lutjering, J.C. Williams, Titanium (Springer, Berlin, 2007).

    Google Scholar 

  5. S. Acharya, P. Gupta, K. Chatterjee, S. Suwas, Microstructure, texture and mechanical properties after cold working and annealing in a biomedical Ti-Nb-Ta alloy. Mater. Sci. Forum 941, 2465 (2018)

    Article  Google Scholar 

  6. S. Bahl, P. Shreyas, M.A. Trishul, S. Suwas, K. Chatterjee, Enhancing the mechanical and biological performance of a metallic biomaterial for orthopedic applications through changes in the surface oxide layer by nanocrystalline surface modification. Nanoscale 7(17), 7704 (2015)

    Article  CAS  Google Scholar 

  7. S. Roy, S. Suwas, S. Tamirisakandala, R. Srinivasan, D.B. Miracle, Processing response of boron modified Ti-6A1-4V alloy in (α+β) working regime, in 138th TMS Annual Meeting and Exhibition, vol. 3, p. 63 (2009)

  8. R. Sabban, S. Bahl, K. Chatterjee, S. Suwas, Globularization using heat treatment in additively manufactured Ti-6Al-4V for high strength and toughness. Acta Mater. 162, 239 (2019)

    Article  CAS  Google Scholar 

  9. I. Weiss, S.L. Semiatin, Thermomechanical processing of alpha titanium alloys—an overview. Mater. Sci. Eng. 263, 243 (1999)

    Article  Google Scholar 

  10. S.L. Semiatin, The Thermomechanical processing of alpha/beta titanium alloys. JOM 49(33–39), 6 (1996)

    Google Scholar 

  11. G. Louarn, L. Salou, A. Hoornaert, P. Layrolle, Nanostructured surface coatings for titanium alloy implants. J. Mater. Res. 34(11), 1892 (2019)

    Article  CAS  Google Scholar 

  12. J.O. Peters, G. Lutjering, Comparison of the fatigue and fracture of α + β and β titanium alloys. Metall. Mater. Trans. A 32A, 2805 (2001)

    Article  CAS  Google Scholar 

  13. H. Jiang, P. Dong, S. Zeng, B. Wu, Effects of recrystallization on microstructure and texture evolution of cold-rolled Ti-6Al-4V alloy. J. Mater. Eng. Perform. 25, 1931 (2016)

    Article  CAS  Google Scholar 

  14. M. Yamada, An overview on the development of titanium alloys for non-aerospace application in Japan. Mater. Sci. Eng. 213, 8 (1996)

    Article  Google Scholar 

  15. T.W. Duerig, G.T. Terlinde, J.C. Williams, Phase transformations and tensile properties Of Ti-10V-2 Fe-3Al. Mater. Trans. 11(1980), 1987 (1987)

    Google Scholar 

  16. T. Ahmed, H.J. Rack, Phase transformations during cooling in α+β titanium alloys. Mater. Sci. Eng. 243, 206 (1998)

    Article  Google Scholar 

  17. R. Ding, Z.X. Guo, A. Wilson, Microstructural evolution of a Ti-6Al-4V alloy during thermomechanical processing. Mater. Sci. Eng. A 327(2), 233 (2002)

    Article  Google Scholar 

  18. X. Ma, F. Li, J. Li, J. Cao, P. Li, J. Dong, Effect of heat treatment on the microstructure and micro-mechanical behavior of quenched Ti-6Al-4V alloy. J. Mater. Eng. Perform. (2015). https://doi.org/10.1007/s11665-015-1682-z

    Article  Google Scholar 

  19. N. Saunders, Modelling of phase equilibria in Ti-alloys, in Proc. 6th World Conference on Titanium (Les Editions de Physique, Paris, 1996), pp. 2167–2176

  20. S. Malinov, Z. Guo, W. Sha, A. Wilson, Differential scanning calorimetry study and computer modeling of β ⇒ α phase transformation in a Ti-6Al-4V alloy. Metall. Mater. Trans. A 32, 879–887 (2001)

    Article  Google Scholar 

  21. J.R. Patel, M. Cohen, Criterion for the action of applied stress in the martensitic transformation. Acta Metall. 1(5), 531 (1953)

    Article  CAS  Google Scholar 

  22. J. Xu, W. Zeng, Y. Zhao, X. Sun, Z. Du, Influence of cooling rate following heat treatment on microstructure and phase transformation for a two-phase alloy. J. Alloys Compd. 688, 301 (2016)

    Article  CAS  Google Scholar 

  23. N. Davari, A. Rostami, S.M. Abbasi, Effects of annealing temperature and quenching medium on microstructure, mechanical properties as well as fatigue behavior of Ti-6Al- crossmark 4V alloy. Mater. Sci. Eng. A 683, 1 (2017)

    Article  CAS  Google Scholar 

  24. T. Grosdidier, C. Roubaud, M.J. Philippe, Y. Combres, The deformation mechanisms in the β-metastable β-cez titanium alloy. Scr. Mater. 36(1), 21 (1997)

    Article  CAS  Google Scholar 

  25. A. Gupta, R.K. Khatirkar, A. Kumar, M.S. Parihar, Investigations on the effect of heating temperature and cooling rate on evolution of microstructure in an α + β titanium alloy. J. Mater. Res. 33(8), 946 (2018)

    Article  CAS  Google Scholar 

  26. G. Lu, Influence of processing on microstructure and mechanical properties of (α+β) titanium alloys. Mater. Sci. Eng. A 243, 32 (1998)

    Article  Google Scholar 

  27. R. Filip, K. Kubiak, W. Ziaja, J. Sieniawski, The effect of microstructure on the mechanical properties of two-phase titanium alloys. J. Mater. Process. Technol. 133, 84 (2003)

    Article  CAS  Google Scholar 

  28. J. Gil, P. Ginebra, M. Manero, A. Planell, Formation of α-Widmanstatten structure: effects of grain size and cooling rate on the Widmanstatten morphologies and on the mechanical properties in Ti-6Al-4V alloy. J. Alloys Compd. 329, 142 (2001)

    Article  CAS  Google Scholar 

  29. S. Zhu, H. Yang, L.G. Guo, X.G. Fan, Effect of cooling rate on microstructure evolution during α/β heat treatment of TA15 titanium alloy. Mater. Charact. 70, 101 (2012)

    Article  CAS  Google Scholar 

  30. J.R. Wood, P.A. Russo, M.F. Welter, E.M. Crist, Thermomechanical processing and heat treatment of Ti–6Al–2Sn–2Zr–2Cr–2Mo–Si for structural applications. Mater. Sci. Eng. A 243, 109 (1998)

    Article  Google Scholar 

  31. N. Poondla, T.S. Srivatsan, A. Patnaik, M. Petraroli, A study of the microstructure and hardness of two titanium alloys: commercially pure and Ti–6Al–4V. J. Alloys Compd. 486, 162 (2009)

    Article  CAS  Google Scholar 

  32. A.K. Nag, K.V.U. Praveen, V. Singh, Effect of heat treatment on tensile behaviour of Ti–6Al–5Zr–0.5Mo–0.25Si alloy. Bull. Mater. Sci. 29(2), 147 (2006)

    Article  CAS  Google Scholar 

  33. P. Barriobero-vila, J. Gussone, J. Haubrich, S. Sandloebes, J. Cesar, P. Cloetens, N. Schell, G. Requena, J. Cesar, Inducing stable α+β microstructures during selective laser melting of Ti-6Al-4V using intensified intrinsic heat treatments. Materials 10(3), 268 (2018)

    Article  CAS  Google Scholar 

  34. P. Pototzky, H.J. Maier, H. Christ, Thermomechanical fatigue behavior of the high-temperature titanium alloy IMI 834. Metall. Mater. Trans. A 29, 2995–3004 (1998)

    Article  Google Scholar 

  35. S. El-Hadad, M. Nady, W. Khalifa, A. Shash, Influence of heat treatment conditions on the mechanical properties of Ti–6Al–4V alloy. Can. Metall. Q. 57(2), 186 (2018)

    Article  CAS  Google Scholar 

  36. M. Chang, C. Luo, M. Huang, High-temperature microstructural characteristics of a novel biomedical titanium alloy. J. Alloys Compd. 499(2), 171 (2010)

    Article  CAS  Google Scholar 

  37. H. Fujii, Strengthening of α + β titanium alloys by thermomechanical processing. Mater. Sci. Eng. A 243(1–2), 103 (1998)

    Article  Google Scholar 

  38. J.M. Manero, F.J. Gil, J.A. Planell, Deformation mechanisms of Ti-6Al-4V alloy with a martensitic microstructure subjected to oligocyclic fatigue. Acta Mater. 48(13), 3353 (2000)

    Article  CAS  Google Scholar 

  39. P.W. Peng, K.L. Ou, C.Y. Chao, Y.N. Pan, C.H. Wang, Research of microstructure and mechanical behavior on duplex (α + β) Ti-4.8Al-2.5Mo-1.4V alloy. J. Alloys Compd. 490(1–2), 661 (2010)

    Article  CAS  Google Scholar 

  40. A.K. Singh, C. Ramachandra, M. Tavafoghi, V. Singh, Microstructure of FL-solution-treated, quenched and aged. J. Alloys Compd. 179, 125 (1992)

    Article  CAS  Google Scholar 

  41. Y. Ohmori, K. Nakai, H. Ohtsubo, M. Tsunofuri, Formation of Widmanstatten α structure in Ti64. Mater. Trans. 35(238), 4 (1994)

    Google Scholar 

  42. B.G. Yuan, C.F. Li, H.P. Yu, D.L. Sun, Influence of hydrogen content on tensile and compressive properties of Ti–6Al–4V alloy at room temperature Influence of hydrogen content on tensile and compressive properties of Ti–6Al–4V alloy at room temperature. Mater. Sci. Eng. A 527(16–17), 4185 (2010)

    Article  CAS  Google Scholar 

  43. H. Matsumoto, K. Kodaira, K. Sato, T.J. Konno, A. Chiba, Microstructure and mechanical properties of α′ martensite type Ti alloys deformed under the α′ processing. Mater. Trans. 50(12), 2744 (2009)

    Article  CAS  Google Scholar 

  44. Y. Chen, C. Yang, C. Fan, Y. Zhuo, S. Lin, C. Chen, Microstructure evolution mechanism and mechanical properties of TC11-TC17 dual alloy after annealing treatment. J. Alloys Compd. 842, 155874 (2020)

    Article  CAS  Google Scholar 

  45. J. Dong, F. Li, C. Wang, Micromechanical behavior study of α phase with different morphologies of Ti-6Al-4V alloy by microindentation. Mater. Sci. Eng. A 580, 105 (2013)

    Article  CAS  Google Scholar 

  46. S.L. Semiatin, J.C. Soper, I.M. Sukonnik, Grain growth in a conventional titanium alloy during rapid, continuous heat treatment. Scr. Metall. Mater. 30(7), 951 (1994)

    Article  CAS  Google Scholar 

  47. S. Mironov, M. Murzinova, S. Zherebtsov, G.A. Salishchev, S.L. Semiatin, Microstructure evolution during warm working of Ti-6Al-4V with a colony-α microstructure. Acta Mater. 57(8), 2470 (2009)

    Article  CAS  Google Scholar 

  48. S.V. Zherebtsov, M.A. Murzinova, M.V. Klimova, G.A. Salishchev, A.A. Popov, S.L. Semiatin, Microstructure evolution during warm working of Ti-5Al-5Mo-5V-1Cr-1Fe at 600 and 800°C. Mater. Sci. Eng. A 563, 168 (2013)

    Article  CAS  Google Scholar 

  49. X. Ye, Z.T.H. Tse, G. Tang, Y. Geng, G. Song, Influence of electropulsing globularization on the microstructure and mechanical properties of Ti-6Al-4V alloy strip with lamellar microstructure. Mater. Sci. Eng. A 622, 1 (2015)

    Article  CAS  Google Scholar 

  50. M. Meng, X.G. Fan, H. Yang, L.G. Guo, M. Zhan, P.F. Gao, Precipitation of secondary alpha in competition with epitaxial growth of primary alpha in two-phase titanium alloys. J. Alloys Compd. 714, 294 (2017)

    Article  CAS  Google Scholar 

  51. L. Mora, C. Quesne, R. Peoelle, Relationships among thermomechanical treatments, microstructure, and tensile properties of a near beta-titanium alloy: β-CEZ: Part II. Relationships between thermomechanical treatments and tensile properties. J. Mater. Res. 11(1), 89 (1996)

    Article  CAS  Google Scholar 

  52. C. Servant, C. Quesne, T. Baudin, R. Penelle, Contribution to the analysis of the α/β interface in some titanium alloys. J. Mater. Res. 6(5), 987 (1991)

    Article  CAS  Google Scholar 

  53. A. Lenain, N. Clément, M. Véron, P.J. Jacques, Characterization of the α phase nucleation in a two-phase metastable β titanium alloy. J. Mater. Eng. Perform. 14(6), 722 (2005)

    Article  CAS  Google Scholar 

  54. T. Furuhara, A.M. Dalley, H.I. Aaronson, Interfacial structure of grain boundary α allotriomorphs in a hypoeutectoid Ti-Cr alloy. Scr. Metall. 22(9), 1509 (1988)

    Article  CAS  Google Scholar 

  55. G.B. Olson, M. Cohen, A mechanism for the strain-induced martensitic transformations. J. Less Common Met. 28, 107 (1972)

    Article  CAS  Google Scholar 

  56. G.B. Olson, M. Cohen, A general mechanism of martensitic nucleation: Part II. FCC → BCC and other martensitic transformations. Metall. Trans. A 7(11), 1905 (1976)

    Article  Google Scholar 

  57. P.C. Maxwell, A. Goldberg, J.C. Shyne, Stress-assisted and strain-induced martensites in FE-NI-C alloys. Metall. Trans. 5(6), 1305 (1974)

    Article  CAS  Google Scholar 

  58. R. Armstrong, I. Codd, R.M. Douthwaite, N.J. Petch, The plastic deformation of polycrystalline aggregates. Philos. Mag. 7(73), 45 (1962)

    Article  CAS  Google Scholar 

  59. S.L. Semiatin, T.R. Bieler, The effect of alpha platelet thickness on plastic flow during hot working of Ti–6Al–4V with a transformed microstructure. Acta Mater. 49, 3565 (2001)

    Article  CAS  Google Scholar 

  60. P. Majumdar, S.B. Singh, M. Chakraborty, The role of heat treatment on microstructure and mechanical properties of Ti-13Zr-13Nb alloy for biomedical load bearing applications. J. Mech. Behav. Biomed. Mater. 4(7), 1132 (2011)

    Article  CAS  Google Scholar 

  61. W.F. Ho, C.P. Ju, J.H. Chern Lin, Structure and properties of cast binary Ti-Mo alloys. Biomaterials 20(22), 2115 (1999)

    Article  CAS  Google Scholar 

  62. Y.T. Lee, G. Welsch, Young’s modulus and damping of Ti6Al4V alloy as a function of heat treatment and oxygen concentration. Mater. Sci. Eng. A 128(1), 77 (1990)

    Article  Google Scholar 

  63. Z. Guo, S. Malinov, W. Sha, Modelling beta transus temperature of titanium alloys using artificial neural network. Comput. Mater. Sci. 32, 1 (2005)

    Article  CAS  Google Scholar 

  64. W. Baldwin, in Metallography and Microstructures, vol. 9 (ASM International, 2018)

  65. Analysis Version 7.2. User Manual (TexSEM Laboratories Inc., Draper, 2013).

  66. M.D. Abràmoff, P.J. Magalhães, S.J. Ram, Image processing with imageJ. Biophotonics Int. 11(7), 36 (2004)

    Google Scholar 

  67. ASTM E8/E8M-16ae1, Standard Test Methods for Tension Testing of Metallic Materials (ASTM International, West Conshohocken, PA, 2016). www.astm.org

Download references

Acknowledgments

The authors would like to thank The Director, VNIT Nagpur for providing the necessary facilities and constant encouragement to publish this paper. The authors would also like to acknowledge the use of ‘National Facility of Texture & OIM’ (a DST-IRPHA facility), IIT Bombay for EBBSD measurements. One of the authors, RKK, wishes to acknowledge Science and Engineering Research Board (SERB) for financial assistance to carry out this work (Grant No. EEQ/2016/000408).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajesh Kisni Khatirkar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mahadule, D., Khatirkar, R.K., Gupta, A. et al. Effect of heating temperature and cooling rate on the microstructure and mechanical properties of a Mo-rich two phase α + β titanium alloy. Journal of Materials Research 36, 751–763 (2021). https://doi.org/10.1557/s43578-020-00100-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43578-020-00100-6

Keywords

Navigation