Substantiation and development of the procedure for calculating a hydraulic balancing device under condition of minimal energy losses

Authors

DOI:

https://doi.org/10.15587/1729-4061.2017.97162

Keywords:

hydraulic balancing device of a pump, balancing of axial force, energy losses, face clearance

Abstract

Here we report the procedure for calculating a hydraulic balancing device from the condition of minimum of energy losses for the accepted value of static characteristic rigidity. The procedure proposed is different from those existing by that its basis is formed by a closed system of equations by the geometric parameters of a hydraulic balancing device, which is obtained from the condition of the minimum of energy losses for the accepted value of statistic characteristic rigidity. In order to determine the energy losses on the node of a hydraulic balancing device, we received calculation formulas for energy losses in the cylindrical and face chokes of a hydraulic balancing device, using an analogy of determiining the energy losses in a cylindrical pipe with round cross section. Results of the work are represented in the form of the given procedure for the calculation of a hydraulic balancing device and proposed mechanism of its realization that make it possible to obtain a unique solution of the closed system of equations for determining the geometric parameters of a hydraulic balancing device. Geometric parameters of a hydraulic balancing device, received in this way, provide for its reliable operation at minimal energy losses on it.

The verification of the procedure for calculation and the study based on the calculation procedure from the condition of the minimum of energy losses are performed using the feed pump PE 600-300 (AO "Sumy Plant "NasosEnergoMash", Ukraine). Research results might be used for calculating the nodes of axial load of the rotor of a multistage centrifugal pump under condition of the minimum of energy losses at the accepted value of static characteristic rigidity of a hydraulic balancing device. In the present work we obtained a closed system of equations for finding the geometric parameters of a hydraulic balancing device from the condition of the minimum of energy losses for the accepted statistic characteristic rigidity. 

Author Biographies

Pavlo Kalinichenko, Sumy State University Rimskoho-Korsakova str., 2, Sumy, Ukraine, 40007

PhD, Associate Professor

Department of General Mechanics and Dynamics of Machines

Oleksandr Gusak, Sumy State University Rimskoho-Korsakova str., 2, Sumy, Ukraine, 40007

PhD, Associate Professor

Department of Applied Fluid Aeromechanics 

Sergey Khovanskyy, Sumy State University Rimskoho-Korsakova str., 2, Sumy, Ukraine, 40007

PhD, Associate Professor

Department of Applied Fluid Aeromechanics 

 

Yuliya Krutas, Sumy State University Rimskoho-Korsakova str., 2, Sumy, Ukraine, 40007

Department of General Mechanics and Dynamics of Machines

References

  1. Martsinkovskiy, V. A. (2009). Osnovy dinamiki rotorov. Sumy: SumGU, 307.
  2. Lomakin, A. (1966). Tsentrobezhnye i osevye nasosy. Moscow-Leningrad: Mashinostroenie, 364.
  3. Krutas', Yu. S., Kalinichenko, P. (2016). Raschet gidropyaty, obespechivayushchey minimal'nye poteri energii. Chep. 1. Suchasnі tekhnologіi u promislovomu virobnitstvі. Sumy: SumDU, 160–161.
  4. Chegurko, L. (1978). Razgruzochnye ustroystva pitatel'nykh nasosov teplovykh elektrostantsiy. Moscow: Energiya, 160.
  5. Zueva, N. (2009). Metodyka rascheta usovershenstvovannoy konstruktsyy avtomatycheskoho ustroystva osevoho uravnoveshyvanyya s upruho ustanovlennym hydravlychesky razhruzhennym vkladyshem. Visnyk Sums'koho derzhavnoho universytetu. Seriya Tekhnichni nauky, 1, 21–27.
  6. Kareva, E. V., Panaiotti, S. S., Savel'ev, A. I. (2009). Avtomatizirovannoe proektirovanie avtomaticheskikh ustroystv dlya uravnoveshivaniya osevykh sil v tsentrobezhnykh nasosakh. Kaluga, 40.
  7. Marcinkowski, W., Korczak, A., Peczkis, G. (2009). Dynamika zespoolu wirujacego pompu odsrodkowej welostopniowej z tarcza odciazajaca. Zeszyty naurowe. Nauki techniczne, 13, 245–263.
  8. Marcinkowski, W., Kundera, Cz. (2008). Teoria konstrukcji uszczelnien bezstykowych. Kielce: Wudwo Politechniki Swietokrzyskiej, 443.
  9. Korczak, A., Marcinkowski, W., Peczkis, G. (2004). Pat. No. 207968. Zespol tarczy odciazajacej sile osiowa w wirnikowej sprezarce promieniowej. F04C 2/00, F04D 29/041, F04D 29/051. No. 0000065096; declareted: 20.02.2004; published: 28.02.2011, 6.
  10. Kalinichenko, P. M., Suprun, A. V. (2010). Self-stabilizing seals. Russian Engineering Research, 30 (7), 689–690. doi: 10.3103/s1068798x10070087
  11. Kalinichenko, P., Suprun, A. (2012). Effective Modes of Axial Balancing of Centrifugal Pump Rotor. Procedia Engineering, 39, 111–118. doi: 10.1016/j.proeng.2012.07.014
  12. Bym-Bad, B. M., Kabanov, M. G. (2004). Atlas konstruktsyy hydromashyn y hydroperedach. Мoscow: Ynfra-M, 134.

Downloads

Published

2017-04-29

How to Cite

Kalinichenko, P., Gusak, O., Khovanskyy, S., & Krutas, Y. (2017). Substantiation and development of the procedure for calculating a hydraulic balancing device under condition of minimal energy losses. Eastern-European Journal of Enterprise Technologies, 2(7 (86), 36–41. https://doi.org/10.15587/1729-4061.2017.97162

Issue

Section

Applied mechanics