An adequacy criterion in evaluating the effectiveness of a model design process

Authors

  • Олександр Миколайович Трунов Petro Mohyla Black Sea State University st. 68 Marines, 10, Nikolaev, Ukraine, 54003, Ukraine

DOI:

https://doi.org/10.15587/1729-4061.2015.37204

Keywords:

effectiveness evaluation, local measure, single adequacy criterion

Abstract

We have considered the process of building a mathematical modelas a technological operation whose effectiveness is evaluated by a unified method. The presented indices of the lowest effectiveness level of the process of building the arbitrary mathematical model can serve as a measurement for comparing their adequacy. We have modeled the process of the mathematical model building by means of the least squaresmethod and extra conditions.We have proved that the use of relative variables with a single measure(the greatest value of the variable in the interval) makes adequacy assessment insensitive to point releases, and in some cases it leads to erroneous conclusions in comparing models. We have suggested using relative variables with a local measure at each point. It is shown that this measure increases evaluation sensitivity to any point deviations in the model. The measure also corresponds to the model qualitative changes at decreasing or increasing relative deviations from boththe index of a separate derivative adequacy and its resulting valueat approximating the physical dimension and its derivatives.

Author Biography

Олександр Миколайович Трунов, Petro Mohyla Black Sea State University st. 68 Marines, 10, Nikolaev, Ukraine, 54003

PhD, First Vice-Rector

References

  1. Kogan, B. Ja., Tetel'baum, I. M. (1978). Obshhie voprosy modelirovanija i modelirovanie s pomoshh'ju vychislitel'nyh mashin, Teorija i metody matematicheskogo modelirovanija, Izdatel'stvo “Nauka”, Moskow , 13.
  2. Klimov, U. N. (1978). Formirovanie matematicheskih modelej kak slozhnyj mnogo urovnevyj proces, Teorija i metody matematicheskogo modelirovanija, Izdatel'stvo “Nauka”, Moscow, 14–16.
  3. Kondratenko, Ju. P., Trunov, A. N. (1978). Primenenie metodov osrednjajushhih operatorov k issledovaniju nestacionarnyh ob’єktov Teorija i metody matematicheskogo modelirovanija, Izdatel'stvo “Nauka”, Moskow, 123–124.
  4. Trounov, A. N. (1990). Mathematical aspects of image recognition. Proc. Of International tecnology 90, Szezecin, Poland, 479–493.
  5. Popov, B. A., Tesler, G. S. (1980). Priblizhenie funkcij dlja tehnicheskih prilozhenij. Kiev: Nauk. dumka, 352.
  6. Popov, B. A., Malachivskij, P. S. (1984). Nailuchshie chebyshevskie priblizhenija summoj mnogochlena i nelinejnyh funkcij. Lvov, 70.
  7. Vorobel', R. A., Popov, B. A. (1981). Ravnomernoe priblizhenie jeksponencial'nymi i stepennymi vyrazhenijami s usloviem. Algoritmy i programmy dlja vychislenija funkcij na JeCVM, 5, part 1, 158–170.
  8. Popov, B. A. (1989). Ravnomernoe priblizhenie splajnami. Kiev: Nauk. dumka, 272.
  9. Bejker, Dzh., Grejvs-Morris, P. (1986). Approksimacii Pade. Moscow: Mir, 502.
  10. Trunov, O. M. (2013). Rozvitok metodіv ocіnki efektivnostі sistem upravlіnnja robotizovanimi kompleksami u glibokovodnih tehnologіjah. Vestnik HNTU, 1 (46), 328–337.
  11. Trunov A. N. (2012). Rekurentna aproksymacija u zadachah modeljuvannja ta proektuvannja. Mykolai'v, 270.
  12. Grop, D. (1979). Metody identifikacii sistem. Moscow: Mir, 302.
  13. Kozeev, A. A. (1979). Metody approksimacii vyhodnyh koordinat nelinejnyh sistem upravlenija. Izv. AN SSSR. Tehnicheskaja kibernetika, 3, 194–199.
  14. Batuner, L. M., Pozin, M. E. (1968). Matematicheskie metody v himicheskoj tehnike, Izd. Himija, Leningradskoe otdelenie, 823.
  15. Hemming, R. V. (1972). Chislenye metody, Izd. “Nauka” Moskow, 400.
  16. Kornejchuk, N. P., Ligun, A. A., Doronin, V. V. (1982). Approksimacija s ogranichenijami. Kiev: Naukova dumka, 252.
  17. Trunov, O. M. (2007). Adekvatnist' modeli jak zadacha bagatokryterial'noi' identyfikacii’. Avyacyonno-kosmycheskaja tehnyka y tehnologyja. Nauchno-tehnycheskyj zhurnal,7 (43), 178–182.
  18. Кobayashi, Y., Ohkita, M., Inoue, M. (1979). On the use exponential function in approximation of elliptic integrals. Mathematics and Computers in Simulation, 21 (2), 226–230. doi: 10.1016/0378-4754(79)90138-1
  19. Trunov, A. N. (2014). The formation of unified method of technological process effectiveness evolution. Problemy informacijnyh tehnologij, 1 (14), 104–108.
  20. Dzjadik, V. K. (1988). Approksimacionnye metody reshenija differencial'nyh i integral'nyh uravnenij. Kiev: Naukova dumka, 304.
  21. Lytvyn, O. M., Rvachov, V. L. (1973). Klasychna formula Tejlora, uzagal'nennja ta zastosuvannja. Kyiv: Nauk. dumka, 122.
  22. Traub, Dzh. (1985). Iteracionnye metody reshenija uravnenij. Moscow: Mir, 264.
  23. Tesler, G. S. (1986). Postroenie bazy znanij na osnove porozhdajushhih algoritmov. Razrabotka i vnedrenie cifrovyh vychislitel'nyh kompleksov i sistem raspredelennoj obrabotki dannyh. Sb. nauchn. trudov. Kiev: In-t kibernetiki AN USSR, 21–27.

Published

2015-02-27

How to Cite

Трунов, О. М. (2015). An adequacy criterion in evaluating the effectiveness of a model design process. Eastern-European Journal of Enterprise Technologies, 1(4(73), 36–41. https://doi.org/10.15587/1729-4061.2015.37204

Issue

Section

Mathematics and Cybernetics - applied aspects