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Abstract— In this paper we combine the Iterative Closest
Point (’ICP’) and ‘point-to-plane ICP‘ algorithms into a single
probabilistic framework. We then use this framework to model
locally planar surface structure from both scans instead of just
the ”model” scan as is typically done with the point-to-plane
method. This can be thought of as ‘plane-to-plane’. The new
approach is tested with both simulated and real-world data and
is shown to outperform both standard ICP and point-to-plane.
Furthermore, the new approach is shown to be more robust to
incorrect correspondences, and thus makes it easier to tune the
maximum match distance parameter present in most variants of
ICP. In addition to the demonstrated performance improvement,
the proposed model allows for more expressive probabilistic
models to be incorporated into the ICP framework. While
maintaining the speed and simplicity of ICP, the Generalized-ICP
could also allow for the addition of outlier terms, measurement
noise, and other probabilistic techniques to increase robustness.

I. INTRODUCTION

Over the last decade, range images have grown in popularity

and found increasing applications in fields including medical

imaging, object modeling, and robotics. Because of occlusion

and limited sensor range, most of these applications require

accurate methods of combining multiple range images into a

single model. Particularly in mobile robotics, the availability

of range sensors capable of quickly capturing an entire 3D

scene has drastically improved the state of the art. A striking

illustration of this is the fact that virtually all competitors in the

DARPA Grand Challenge relied on fast-scanning laser range

finders as the primary input method for obstacle avoidance,

motion planning, and mapping. Although GPS and IMUs are

often used to calculate approximate displacements, they are not

accurate enough to reliably produce precise positioning. In ad-

dition, there are many situation (tunnels, parking garages, tall

buildings) which obstruct GPS reception and further decrease

accuracy. To deal with this shortcoming, most applications

rely on scan-matching of range data to refine the localization.

Despite such wide usage, the typical approach to solving the

scan-matching problem has remained largely unchanged since

its introduction.

II. SCANMATCHING

Originally applied to scan-matching in the early 90s, the

ICP technique has had many variations proposed over the

past decade and a half. Three papers published around the

same time period outline what is still considered the state

of the art solution for scan-matching. The most often cited

analysis of the algorithm comes from Besl and McKay[1]. [1]

directly addresses registration of 3D shapes described either

geometrically or with point clouds. Chen and Medioni[7]

considered the more specific problem of aligning range data

for object modeling. Their approach takes advantage of the

tendency of most range data to be locally planar and intro-

duces the ”point-to-plane” variant of ICP. Zhang[5] almost

simultaneously describes ICP, but adds a robust method of

outlier rejection in the correspondence selection phase of the

algorithm.

Two more modern alternatives are Iterative Dual Correspon-

dence [15] and Metric-Based ICP [16]. IDC improves the

point-matching process by maintaining two sets of correspon-

dences. MbICP is designed to improve convergence with large

initial orientation errors by explicitly putting a measure of

rotational error as part of the distance metric to be minimized.

The primary advantages of most ICP based methods are

simplicity and relatively quick performance when imple-

mented with kd-trees for closest-point look up. The draw-

backs include the implicit assumption of full overlap of the

shapes being matched and the theoretical requirement that the

points are taken from a known geometric surface rather than

measured [1]. The first assumption is violated by partially

overlapped scans (taken from different locations). The sec-

ond causes problems because different discretizations of the

physical surface make it impossible to get exact overlap of

the individual points even after convergence. Point-to-plane,

as suggested in [7], solves the discretization problem by not

penalizing offsets along a surface. The full overlap assumption

is usually handled by setting a maximum distance threshold

in the correspondence.

Aside from point-to-plane, most ICP variations use a closed

form solution to iteratively compute the alignment from the

correspondences. This is typically done with [10] or similar

techniques based on cross-correlation of the two data sets. Re-

cently, there has been interest in the use of generic non-linear

optimization techniques instead of the more specific closed

form approaches [9]. These techniques are advantageous in

that they allow for more generic minimization functions rather

then just the sum of euclidean distances. [9] uses non-linear

optimization with robust statistics to show a wider basin of

convergence.

We argue that among these, the probabilistic techniques

are some of the best motivated due to the large amount of

theoretical work already in place to support them. [2] applies

a probabilistic model by assuming the second scan is generated

from the first through a random process. [4] Applies ray

tracing techniques to maximize the probability of alignment.



[8] builds a set of compatible correspondences, and then

maximizes probability of alignment over this distribution. [17]

introduces a fully probabilistic framework which takes into

account a motion model and allows estimates of registration

uncertainty. An interesting aspect of the approach is that a

sampled analog of the Generalized Hough Transform is used

to compute alignment without explicit correspondences, taking

both surface normals into account for 2D data sets.

There is also a large amount of literature devoted to solving

the global alignment problem with multiple scans ([18] and

many others). Many approaches to this ([18] in particular) use

a pair-wise matching algorithm as a basic component. This

makes improvements in pairwise matching applicable to the

global alignment problem as well.

Our approach falls somewhere between standard IPC and

the fully probabilistic models. It is based on using MLE

as the non-linear optimization step, and computing discrete

correspondences using kd-trees. It is unique in that it provides

symmetry and incorporates the structural assumptions of [7].

Because closest point look up is done with euclidean distance,

however, kd-trees can be used to achieve fast performance

on large pointclouds. This is typically not possible with fully

probabilistic methods as these require computing a MAP

estimate over assignments. In contrast to [8], we argue that

the data should be assumed to be locally planar since most

environments sampled for range data are piecewise smooth

surfaces. By giving the minimization processes a probabilistic

interpretation, we show that is easy to extend the technique to

include structural information from both scans, rather then just

one as is typically done in ”point-to-plane” ICP. We show that

introducing this symmetry improves accuracy and decreases

dependence on parameters.

Unlike the IDC [15] and MbICP [16] algorithms, our

approach is designed to deal with large 3D pointclouds. Even

more fundamentally both of these approaches are somewhat

orthogonal to our technique. Although MbICP suggests an

alternative distance metric (as do we), our metric aims to

take into account structure rather then orientation. Since our

technique does not rely on any particular type (or number) of

correspondences, it would likely be improved by incorporating

a secondary set of correspondences as in IDC.

A key difference between our approach and [17] is the

computational complexity involved. [17] is designed to deal

with planar scan data – the Generalized Hough Transform sug-

gested requires comparing every point in one scan with every

point in the other (or a proportional number of comparisons

in the case of sampling). Our approach works with kd-trees

for closest point look up and thus requires O(n log(n) explicit

point comparisons. It is not clear how to efficiently generalize

the approach in [17] to the datasets considered in this paper.

Furthermore, there are philosophical differences in the models.

This paper proceeds by summarizing the ICP and point-

to-plane algorithms, and then introducing Generalized-ICP

as a natural extension of these two standard approaches.

Experimental results are then presented which highlight the

advantages of Generalized-ICP.

A. ICP

The key concept of the standard ICP algorithm can be

summarized in two steps:

1) compute correspondences between the two scans.

2) compute a transformation which minimizes distance

between corresponding points.

Iteratively repeating these two steps typically results in conver-

gence to the desired transformation. Because we are violating

the assumption of full overlap, we are forced to add a max-

imum matching threshold dmax. This threshold accounts for

the fact that some points will not have any correspondence in

the second scan (e.g. points which are outside the boundary of

scan A). In most implementations of ICP, the choice of dmax

represents a trade off between convergence and accuracy. A

low value results in bad convergence (the algorithm becomes

“short sighted”); a large value causes incorrect correspon-

dences to pull the final alignment away from the correct value.

Standard ICP is listed as Alg. 1.

input : Two pointclouds: A = {ai}, B = {bi}
An initial transformation: T0

output: The correct transformation, T , which aligns A

and B

T ← T0;1

while not converged do2

for i← 1 to N do3

mi ← FindClosestPointInA(T · bi);4

if ||mi − T · bi|| ≤ dmax then5

wi ← 1;6

else7

wi ← 0;8

end9

end10

T ← argmin
T

{
∑

i

wi||T · bi −mi||
2};

11

end12

Algorithm 1: Standard ICP

B. Point-to-plane

The point-to-plane variant of ICP improves performance by

taking advantage of surface normal information. Originally

introduced by Chen and Medioni[7], the technique has come

into widespread use as a more robust and accurate variant of

standard ICP when presented with 2.5D range data. Instead

of minimizing Σ||T · bi −mi||
2, the point-to-plane algorithm

minimizes error along the surface normal (i.e. the projection

of (T · bi − mi) onto the sub-space spanned by the surface

normal). This improvement is implemented by changing line

11 of Alg. 1 as follows:

T ← argmin
T

{
∑

i

wi||ηi · (T · bi −mi)||
2}

where ηi is the surface normal at mi.



III. GENERALIZED-ICP

A. Derivation

Generalized-ICP is based on attaching a probabilistic model

to the minimization step on line 11 of Alg. 1. The technique

keeps the rest of the algorithm unchanged so as to reduce

complexity and maintain speed. Notably, correspondences are

still computed with the standard Euclidean distance rather then

a probabilistic measure. This is done to allow for the use of

kd-trees in the look up of closest points and hence maintain

the principle advantages of ICP over other fully probabilistic

techniques – speed and simplicity.

Since only line 11 is relevant, we limit the scope of the

derivation to this context. To simplify notation, we assume

that the closest point look up has already been performed

and that the two point clouds, A = {ai}i=1,...,N and B =
{bi}i=1,...,N , are indexed according to their correspondences

(i.e. ai corresponds with bi). For the purpose of this section,

we also assume all correspondences with ||mi−T ·bi|| > dmax

have been removed from the data.

In the probabilistic model we assume the existence of

an underlying set of points, Â = {âi} and B̂ = {b̂i},
which generate A and B according to ai ∼ N (âi, C

A
i )

and bi ∼ N (b̂i, C
B
i ). In this case, {CA

i } and {CB
i } are

covariance matrices associated with the measured points. If

we assume perfect correspondences (geometrically consistent

with no errors due to occlusion or sampling), and the correct

transformation, T∗, we know that

b̂i = T∗âi (1)

For an arbitrary rigid transformation, T, we define d
(T)
i =

bi − Tai, and consider the distribution from which d
(T∗)
i

is drawn. Since ai and bi are assumed to be drawn from

independent Gaussians,

d
(T∗)
i ∼ N (b̂i − (T∗)âi, C

B
i + (T∗)CA

i (T∗)T )

= N (0, CB
i + (T∗)CA

i (T∗)T )

by applying Eq. (1).

Now we use MLE to iteratively compute T by setting

T = argmax
T

∏

i

p(d
(T)
i ) = argmax

T

∑

i

log(p(d
(T)
i ))

The above can be simplified to

T = argmin
T

∑

i

d
(T)
i

T
(CB

i + TCA
i TT )−1d

(T)
i (2)

This defines the key step of the Generalized-ICP algorithm.

The standard ICP algorithm can be seen as a special case

by setting

CB
i = I

CA
i = 0

In this case, (2) becomes

T = argmin
T

∑

i

d
(T)
i

T
d
(T)
i

= argmin
T

∑

i

||d
(T)
i ||

2
(3)

which is exactly the standard ICP update formula.

With the Generalized-IPC framework in place, however, we

have more freedom in modeling the situation; we are free

to pick any set of covariances for {CA
i } and {CB

i }. As a

motivating example, we note that the point-to-plane algorithm

can also be thought of probabilistically.

The update step in point-to-plane ICP is performed as:

T = argmin
T

{
∑

i

||Pi · di||
2} (4)

where Pi is the projection onto the span of the surface normal

at bi. This minimizes the distance of T · ai from the plane

defined by bi and its surface normal. Since Pi is an orthogonal

projection matrix, Pi = Pi
2 = Pi

T . This means ||Pi · di||
2

can be reformulated as a quadratic form:

||Pi · di||
2 = (Pi · di)

T · (Pi · di)

= dT
i ·Pi · di

Looking at (4) in this format, we get:

T = argmin
T

{
∑

i

dT
i ·Pi · di} (5)

Observing the similarity between the above and (2), it can

be shown that point-to-plane ICP is a limiting case of

Generalized-ICP. In this case

CB
i = Pi

−1 (6)

CA
i = 0 (7)

Strictly speaking Pi is non-invertible since it is rank defi-

cient. However, if we approximate Pi with an invertible Qi,

Generalized-ICP approaches point-to-plane as Qi → Pi. We

can intuitively interpret this limiting behavior as bi being

constrained along the plane normal vector with nothing known

about its location inside the plane itself.

B. Application: plane-to-plane

In order to improve performance relative to point-to-plane

and increase the symmetry of the model, Generalized-ICP can

be used to take into account surface information from both

scans. The most natural way to incorporate this additional

structure is to include information about the local surface of

the second scan into (7). This captures the intuitive nature

of the situation, but is not mathematically feasible since the

matrices involved are singular. Instead, we use the intuition of

point-to-plane to motivate a probabilistic model.

The insight of the point-to-plane algorithm is that our point

cloud has more structure then an arbitrary set of points in

3-space; it is actually a collection of surfaces sampled by

a range-measuring sensor. This means we are dealing with



Fig. 1. illustration of plane-to-plane

a sampled 2-manifold in 3-space. Since real-world surfaces

are at least piece-wise differentiable, we can assume that our

dataset is locally planar. Furthermore, since we are sampling

the manifold from two different perspectives, we will not in

general sample the exact same point (i.e. the correspondence

will never be exact). In essence, every measured point only

provides a constraint along its surface normal. To model this

structure, we consider each sampled point to be distributed

with high covariance along its local plane, and very low

covariance in the surface normal direction. In the case of a

point with e1 as its surface normal, the covariance matrix

becomes




ǫ 0 0
0 1 0
0 0 1





where ǫ is a small constant representing covariance along the

normal. This corresponds to knowing the position along the

normal with very high confidence, but being unsure about its

location in the plane. We model both ai and bi as being drawn

from this sort of distribution.

Explicitly, given µi and νi – the respective normal vectors at

bi and ai – CB
i and CA

i are computed by rotating the above

covariance matrix so that the ǫ term represents uncertainty

along the surface normal. Letting Rx denote one of the

rotations which transform the basis vector e1 → x, set

CB
i = Rµi

·





ǫ 0 0
0 1 0
0 0 1



 ·RT
µi

CA
i = Rνi

·





ǫ 0 0
0 1 0
0 0 1



 ·RT
νi

The transformation, T, is then computed via (2).

Fig. 1 provides an illustration of the effect of the algorithm

in an extreme situation. In this case all of the points along the

vertical section of the green scan are incorrectly associated

with a single point in the red scan. Because the surface

orientations are inconsistent, plane-to-plane will automatically

discount these matches: the final summed covariance matrix

of each correspondence will be isotropic and will form a very

small contribution to the objective function relative to the thin

and sharply defined correspondence covariance matrices. An

alternative view of this behavior is as a soft constraint for each

correspondence. The inconsistent matches allow the red scan-

point to move along the x-axis while the green scan-points are

free to move along the y-axis. The incorrect correspondences

thus form very weak and uninformative constraints for the

overall alignment.

Computing the surface covariance matrices requires a sur-

face normal associated with every point in both scans. There

are many techniques for recovering surface normals from point

clouds, and the accuracy of the normals naturally plays an

important role in the performance of the algorithm. In our

implementation, we used PCA on the covariance matrix of the

20 closest points to each scan point. In this case the eigen-

vector associated with the smallest eigenvalue corresponds

with the surface normal. This method is used to compute

the normals for both point-to-plane and Generalized-ICP. For

Generalized-ICP, the rotation matrices are constructed so that

the ǫ component of the variance lines up with the surface

normal.1

IV. RESULTS

We compare all three algorithms to test performance of the

proposed technique. Although efficient closed form solutions

exist for T in standard ICP, we implemented the minimization

with conjugate gradients to simplify comparison. Performance

is analyzed in terms of convergence to the correct solution after

a known offset is introduced between the two scans. We limit

our tests to a maximum of 250 iterations for standard ICP, and

50 iterations for the other two algorithms since convergence

was typically achieved before this point (if at all).

Both simulated (Fig. 3) and real (Fig. 4) data was used in or-

der to demonstrate both theoretical and practical performance.

The simulated data set also allowed tests to be performed on

a wider range of environments with absolutely known ground

truth. The outdoor simulated environment differs from the

collected data primarily in the amount of occlusion presented,

and in the more hilly features of the ground plane. The real-

world outdoor tests also demonstrate performance with more

detailed features and more representative measurement noise.

Simulated data was generated by ray-tracing a SICK scanner

mounted on a rotating joint. Two 3D environments were

created to test performance against absolute ground truth both

in the indoor (Fig. 2(a)) and an outdoor (Fig. 2(b)) scenario.

The indoor environment was based on an office hallway,

while the outdoor setting reflects a typical landscape around a

building. In both cases, we simulated a laser-scanner equipped

robot traveling along a trajectory and taking measurements at

fixed points along the path. Gaussian noise was added to make

the tests more realistic.

Tests were also performed on real data from the logs of

an instrumented car. The logs included data recorded by a

roof-mounted Velodyne range finder as the car made a loop

through a suburban environment and were annotated with GPS

and IMU data. This made it possible to apply a pairwise

constraint-based SLAM technique to generate ground truth

1In our implementation we compute these transformations by considering
the eigen decomposition of the empirical covariance of the 20 closest points,

Σ̂ = UDU
T . We then use U in place of the rotation matrix (in effect

replacing D with diag(ǫ, 1, 1) to get the final surface-aligned matrix).









by hand, the real world data contains much more detailed,

high-frequency data. This increases the chances of incorrect

correspondences which share a common surface orientation –

a situation which is not taken into account by our algorithm.

Nonetheless, even when comparing worst-cast values of dmax

for Generalized-ICP with best-case values for point-to-plane,

Generalized-ICP performs roughly as good.

As mentioned in Section II, the dmax plays an important

role in the performance of ICP. Setting a low value decreases

the chance of convergence, but increases accuracy. Setting a

value which is too high increases the radius of convergence,

but decreases accuracy since more incorrect correspondences

are made. The algorithm proposed in this paper heavily

reduces the penalty of picking a large value of dmax by dis-

counting the effect of incorrect correspondences. This makes it

easier to get good performance in a wide range of environment

without hand-picking a value of dmax for each one.

In addition to the increased accuracy, the new algorithm

gives equal consideration to both scans when computing the

transformation. Fig. 6 and Fig. 7 show two situations where

using the structure of both scans removed local minima which

were present with point-to-plane. These represent top-down

views of velodyne scans recorded approximately 30 meters

apart and aligned. Fig. 8 shows some additional views of the

same scan pairs to better illustrate the structure of the scene.

The scans cover a range of 70-100 meters from the sensor

in an outdoor environment as seen from a car driving on the

road.

Because this minimization is still performed within the ICP

framework, the approach combines the speed and simplicity

of the standard algorithm with some of the advantages of

fully probabilistic techniques such as EM. The theoretical

framework also allows standard robustness techniques to be

incorporated. For example, the Gaussian kernel can be mixed

with a uniform distribution to model outliers. The Gaussian

RVs can also be replaced by a distribution which takes

into account a certain amount of slack in the matching to

explicitly model the inexact correspondences (by assigning the

distribution of d
(T)
i a constant density on some region around

0). Although we have considered some of these variations,

none of them have an obvious closed form which is easily

minimized. This makes them too complex to include in the

current work, but a good topic for future research.

V. CONCLUSION

In this paper we have proposed a generalization of the

ICP algorithm which takes into account the locally planar

structure of both scans in a probabilistic model. Most of the

ICP framework is left unmodified so as to maintain the speed

and simplicity which make this class of algorithms popular

in practice; the proposed generalization only deals with the

iterative computation of the transformation. We assume all

measured points are drawn from Gaussians centered at the true

points which are assumed to be in perfect correspondence.

MLE is then used to iteratively estimate transformation for

aligning the scans. In a range of both simulated and real-world

experiments, Generalized-ICP was shown to increase accuracy.

At the same time, the use of structural information from both

scans decreased the influence of incorrect correspondences.

Consequently the choice of maximum matching distance as a

parameter for the correspondence phase becomes less critical

to performance. These modifications maintain the simplicity

and speed of ICP, while improving performance and removing

the trade off typically associated with parameter selection.
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