
3D Relative Pose Estimation from Six Distances

Nikolas Trawny, Xun S. Zhou, and Stergios I. Roumeliotis
Department of Computer Science and Engineering, University of Minnesota, Minneapolis, MN 55455

E-mail: {trawny,zhou,stergios}@cs.umn.edu

Abstract—In this paper, we present three fast, hybrid numeric-
algebraic methods to solve polynomial systems in floating point
representation, based on the eigendecomposition of a so-called
multiplication matrix. In particular, these methods run using
standard double precision, use only linear algebra packages,
and are easy to implement. We provide the proof that these
methods do indeed produce valid multiplication matrices, and
show their relationship. As a specific application, we use our
algorithms to compute the 3D relative translation and orientation
between two robots, based on known egomotion and six robot-
to-robot distance measurements. Equivalently, the same system
of equations arises when solving the forward kinematics of the
general Stewart-Gough mechanism. Our methods can find all
40 solutions, trading off speed (0.08s to 1.5s, depending on the
choice of method) for accuracy.

I. INTRODUCTION

For the successful operation of multi-robot systems, accu-

rate knowledge of the 3D robot-to-robot position and orien-

tation (pose) is essential. Common methods to determine this

relative transformation, such as direct manual measurements,

absolute measurements with respect to a common frame (e.g.,

using GPS), or indirect correlation of sensor measurements

(e.g., map or image matching) either provide insufficient ac-

curacy, or can be infeasible in GPS-denied or featureless areas.

In recent work [1], we have addressed this problem by using

robot-to-robot distance measurements from different vantage

points. Our previous method uses 10 distance measurements

plus known robot egomotion to linearly compute the robot-to-

robot relative pose. In order to increase robustness to outliers

and noise (e.g., using RANSAC), the aim of this paper is

to present a solution algorithm for the minimal problem that

requires only 6 distance measurements to arrive at a discrete

set of solutions for the six unknowns.

The forward kinematics of the general Stewart-Gough

mechanism [2] represent the mechanical analogue to this

minimal problem. The general Stewart-Gough mechanism

consists of two platforms connected by six legs, whose lengths

determine the pose of the end platform relative to the base

platform. The forward-kinematics problem is then to determine

the relative pose of both platforms given the leg lengths and

their attachment coordinates. For conciseness, we will from

now on refer to both this, as well as the 3D robot relative pose

problem as the 3DD (3D-distance) problem. It has been shown

that the 3DD problem requires solving a system of polynomial

equations that has 40 (generally complex) solutions [3], [4], all

of which can be real [5]. Unfortunately, solving this polyno-

mial system has proven quite difficult. The currently available

techniques capable of finding all 40 solutions are either slow

Fig. 1. 3DD Problem geometry.

and not suitable for real-time application (run-time can reach

minutes, even hours) and/or they are highly non-trivial to

implement (they require non-standard data types, specialized

libraries, and a large amount of symbolic calculations).

The contribution of this paper is twofold: (i) We present the

theoretical proofs for the correctness of two polynomial system

solvers. In particular, these proofs cover a generalization

of [6], [7], as well as the method of [8], and establish their

relationship. Both approaches employ the paradigm of solving

polynomial systems using the eigendecomposition of a so-

called multiplication matrix [9], also referred to as action

matrix. These solvers are generally applicable to a wide range

of problems arising in robotics and computer vision. (ii) We

apply these solvers to the 3DD problem, and provide solution

algorithms that are very fast (0.08s - 1.5s), use standard double

precision data types, and can be very easily implemented using

only linear algebra libraries.

Following the description of related work (Section II), we

present the 3DD problem in Section III, motivating the need

for fast polynomial solvers. We provide a brief background

on the theory of polynomial system solving in Section IV and

outline the solution algorithms in Section V. We end the paper

with simulation results (Section VI), and conclusions and an

outlook on future work in Section VII.

II. RELATED WORK

Although the two incarnations of the 3DD problem - de-

termining the relative pose of two robots from distance mea-

surements, or solving the forward kinematics of the general

Stewart-Gough mechanism - are mathematically equivalent,

in that they both lead to the same system of multivariate

polynomials, research has mostly concentrated on the latter.

Current algorithms for solving the forward kinematics problem

of the general Stewart-Gough mechanism can be broadly

divided into numeric and algebraic methods.

Newton’s method is a widely used numeric approach to

obtain solutions to the forward kinematics of the Stewart

mechanism [10] due to its high speed and ease of implemen-

tation. It works extremely well when initialized close to a

true solution, as is the case when tracking a slowly-moving

manipulator at high update rates. However, it may converge

very slowly or even diverge when initialized poorly, and will

generally not be able to find all 40 solutions without prior

information about their approximate locations.

Newton’s method is also a building block of polynomial

continuation, that uses homotopy [11] to track the known

solutions of a starting system continuously until they match

those of the actual system of interest. Polynomial continuation

was the earliest numerical tool used to find all 40 solutions

of the forward kinematics problem [3]. Free implementations

of this method, such as PHCpack [12], can successfully solve

this problem, and were used as ground-truth in our simulations.

Unfortunately, in our experiments, the black-box implementa-

tion of PHCpack required on average more than 120 s to solve

one instance of the problem and is hence too slow for real-time

application (although the forward kinematics have reportedly

been solved using continuation methods in 14 s [4]). Moreover,

continuation methods may sometimes miss solutions [13].

One algebraic method for solving a polynomial system is to

compute its Gröbner basis [14] with respect to lexicographical

monomial ordering. Such a Gröbner basis is essentially an

equivalent polynomial system from which the solution can be

easily obtained. In particular, for this problem it will contain

one univariate polynomial of degree 40, whose roots form the

solutions of the original system for that variable. The values of

the remaining variables can be obtained from the other polyno-

mials of the Gröbner basis via back substitution. Despite recent

advances in algorithms to compute Gröbner bases, computing

one symbolically for this problem has proven intractable, and

even for specific numerical instances using rational numbers

still requires several seconds up to minutes [13].

A second algebraic method is to use dialytic elimination

or resultants to obtain the 40-degree univariate polynomial.

This has first been achieved by Husty [15], and since then

refined [16], [17]. To our knowledge, Lee and Shim’s algo-

rithm [17] is currently the fastest solution method for the

forward kinematics (the authors report timings of 0.02 s).

Unfortunately, all the elimination algorithms mentioned above

are quite challenging to implement, they require non-standard,

high-precision data-types (e.g., with 30 digits precision [17])

to cope with numerical error accumulation, and a large amount

of symbolic computations.

The algorithms presented in this paper solve a system of

polynomials by an eigendecomposition of an associated multi-

plication matrix, a general hybrid algebraic-numeric approach

pioneered by Auzinger and Stetter [9] and described in detail

in [18]. This concept has recently been successfully applied to

solve minimal problems in computer vision [19], [20]. More

precisely, our methods are inspired by the general techniques

to solve polynomial systems in floating point representation

presented recently in [19] and [8]. Two modifications to [19]

have been introduced with the aim of improving numerical

stability [6], [7], however, without proving that these methods

will indeed yield a valid multiplication matrix, and without

providing conditions under which they will work. In this paper,

we prove that a generalized version of [6], [7], as well as the

approach in [8] do indeed yield valid multiplication matrices

for a specific class of problems in which certain rank condi-

tions are fulfilled (which are tacitly implied in [6], [7]). Our

methods make extensive use of linear algebra, in particular QR

factorization, and require only standard double precision. Their

high speed and accessibility make them therefore attractive

for real-time applications in industrial settings, e.g., in flight

simulator control.

III. PROBLEM FORMULATION

To motivate the need for fast polynomial solvers, in this

section we will outline the 3DD problem and show how it

results in a system of polynomials. In the next two sections

we will then discuss algorithms to solve this system.

Assume that two robots move in 3D and take six robot-

to-robot distance measurements di, i = 1, . . . , 6. We assume

without loss of generality that the global frames of each robot,

{1} and {2}, are attached to the points where the first mutual

measurement takes place (cf. Fig. 1). Further, we assume that

each robot knows the coordinates, ui := 1ui and vi := 2vi,

of its location at the time of the remaining five measurements

with respect to its own global frame of reference. The objective

is to find the 6 degree-of-freedom transformation, i.e., the

translation p := 1p2 and rotation C := 1
2C of the second

frame with respect to the first.

The distance measurements can be expressed as the length

of vector wi, i = 1, . . . , 6, connecting the two robots at the

time of measurement.

di = ||wi||2 =
√

wT
i wi, wi := p + Cvi − ui

Squaring each distance, and noting that u1 = v1 = 0, we

obtain the following six polynomial constraints

pT p − d2
1 = 0 (1)

− uT
i p + vT

i CT p + fi = 0 i = 2, . . . , 6 (2)

where fi =
1

2
(d2

1 + vT
i vi + uT

i ui − d2
i) − uT

i Cvi

Due to its lack of singularities, we choose the (unit)

quaternion to represent orientation. It is defined as q̄ =[
q1 q2 q3 q4

]T
=

[
qT q4

]T
, and related to the rota-

tional matrix by

C(q̄) = I3 − 2q4⌊q×⌋ + 2⌊q×⌋2 (3)

where ⌊a×⌋ is the skew-symmetric cross-product matrix of

a vector a. Since the quaternions q̄ and −q̄ both represent

the same rotation, the number of solutions is doubled. One

can easily eliminate the spurious solutions by discarding those

with q4 < 0. When using the unit quaternion representation,

we need to add the unit-norm constraint

q̄T q̄ − 1 = 0 (4)

to the polynomial system of (1) and (2).

A. Normalization of p

In order to guarantee a bounded norm of the system’s

solution, in addition to using the unit-norm quaternion, we

introduce the normalized translation

p̄ = p/||p||2 = p/d1 (5)

This normalization can easily be realized by normalizing the

position coordinates ūi := ui/d1, v̄i := vi/d1, and distances,

d̄i := di/d1. Then, the system (1) and (2) becomes

p̄T p̄ − 1 = 0 (6)

− ūT
i p̄ + v̄T

i CT p̄ + f̄i = 0 i = 2, . . . , 6 (7)

with f̄i =
1

2
(1 + v̄T

i v̄i + ūT
i ūi − d̄2

i) − ūT
i Cv̄i (8)

From the solution of this normalized system, we can easily

recover the actual translation from p = d1p̄.

B. Increasing speed by prior elimination of p̄

Since the complexity and hence the speed of polynomial

solvers depend heavily on the number of unknowns, we reduce

the number of variables by eliminating the translation, p̄. As

a result, we obtain a new system of polynomials only in the

elements of the quaternion q̄. To this end, we first define the

rotated normalized translation vector,

r̄ := CT p̄ (9)

which allows us to write (7) as

[
v̄T

i −ūT
i f̄i

]


r̄

p̄

1


 = 0, i = 2, . . . , 6 (10)

We also obtain the following constraints from (9)

(q4I3 − ⌊q×⌋)r̄ − (q4I3 + ⌊q×⌋)p̄ = 0 (11)

qT r̄ − qT p̄ = 0 (12)

where (11) results from substituting (3) in (9) and multiplying

by (q4I3 − ⌊q×⌋) (using ⌊q×⌋3 = −qT q⌊q×⌋) while we

arrive at (12) by noting that q is the unit eigenvector of C with

corresponding eigenvalue 1 and pre-multiplying both sides of

(9) with qT .

By stacking these equations, we obtain



v̄T
2 −ūT

2 f̄2
...

...
...

v̄T
6 −ūT

6 f̄6
(q4I3 − ⌊q×⌋) −(q4I3 + ⌊q×⌋) 0

qT −qT 0




︸ ︷︷ ︸
Ξ



r̄

p̄

1


 = 0 (13)

In order for (13) to have a solution, the matrix Ξ must be

rank deficient, or the determinants of its (7 × 7)-submatrices

must vanish. These determinants are polynomials in the el-

ements of q̄ only. Out of the 36 possibilities, we define the

following five 4-th order polynomials (using Matlab notation)

θ1(q̄) = det
(
Ξ

([
1 : 5 6 7

]
, :

))
(14)

θ2(q̄) = det
(
Ξ

([
1 : 5 6 8

]
, :

))
(15)

θ3(q̄) = det
(
Ξ

([
1 : 5 7 8

]
, :

))
(16)

θ4(q̄) = det
(
Ξ

([
1 : 5 6 9

]
, :

))
(17)

θ5(q̄) = det
(
Ξ

([
1 : 5 7 9

]
, :

))
(18)

Notice that the θi(q̄) have not yet used the information

in (6). To this end, we solve (13) for p̄ symbolically, using

Cramer’s rule. From the submatrix Ξ̃1 = Ξ
([

1 : 6
]
, :

)

consisting of the first six rows of Ξ, we obtain a first candidate

p̄1 = −
1

pd,1



pnx,1

pny,1

pnz,1


 (19)

where

pnx,1 = det
(
Ξ̃1

(
:,

[
1 : 3 7 5 6

]))
(20)

pny,1 = det
(
Ξ̃1

(
:,

[
1 : 3 4 7 6

]))
(21)

pnz,1 = det
(
Ξ̃1

(
:,

[
1 : 3 4 5 7

]))
(22)

pd,1 = det
(
Ξ̃1

(
:,

[
1 : 6

]))
(23)

Analogously, we obtain three additional translation candidates,

p̄2, p̄3, p̄4 from the submatrices

Ξ̃2 = Ξ
([

1 : 5 7
]
, :

)
(24)

Ξ̃3 = Ξ
([

1 : 5 8
]
, :

)
(25)

Ξ̃4 = Ξ
([

1 : 5 9
]
, :

)
(26)

Notice that the denominators and the three numerators of

each candidate are polynomials in q̄.

Direct substitution of each translation candidate p̄i in (6)

yields four 6-th order polynomials in q̄, i = 1, . . . , 4

φi(q̄) = p2
nx,i + p2

ny,i + p2
nz,i − p2

d,i = 0 (27)

The new polynomial system resulting from the original

equations (6), (7) after eliminating the translation p̄, is

θi(q̄) = 0, i = 1, . . . , 5
φi(q̄) = 0, i = 1, . . . , 4

q̄T q̄ − 1 = 0



 (28)

Once we have obtained a solution for q̄, we can recover the

translation by evaluating (20)-(23) at that solution and back-

substituting the resulting values in (19).

IV. BACKGROUND

Before presenting the algorithms to solve the 3DD prob-

lem, we briefly introduce necessary notation and sketch the

theoretical basis of the multiplication matrix techniques for

polynomial system solving. We recommend [18] and [14] for

a detailed reference on this subject. Intuitively, multiplication

matrices are the generalization of companion matrices (for

solving univariate polynomials) to systems of polynomials in

multiple variables.

Let a monomial in n variables be denoted by xα :=
xα1

1 xα2

2 . . . xαn
n , αi ∈ Z≥0, and a polynomial in n vari-

ables with complex coefficients correspondingly by ψ :=∑
j cjx

αj , cj ∈ C. The ring of all polynomials in n variables

with complex coefficients will be denoted as C
[
x1, . . . , xn

]
.

The total degree of a monomial is defined as
∑n

i=1
αi, and

the total degree of a polynomial is the maximum total degree

of all its monomials. In order to represent a polynomial ψ
in vector notation, let ℓ denote the total degree of ψ, and

stack all monomials up to and including total degree ℓ in

a vector xℓ :=
[
xℓ

1 xℓ−1

1 x2 . . . xn 1
]T

. We can then

write ψ = cT xℓ where c is a potentially very sparse coefficient

vector. For a polynomial system, ψ1 = 0, . . . , ψu = 0, we can

analogously define ℓ as the maximum total degree of all ψi,

and by stacking the corresponding coefficient vectors ci form

the matrix system Cxℓ = 0. Let xℓ(p) denote the vector of

monomials evaluated at a point p ∈ C
n. Solving the system

then means finding all points p that fulfill Cxℓ(p) = 0.

Next, we define the ideal I := 〈ψ1, . . . , ψu〉 =
{
∑

i hiψi, hi ∈ C
[
x1, . . . , xn

]
}, i.e., the set of all linear

combinations of the original system multiplied with arbitrary

polynomials. Each element of the ideal will equal zero when

evaluated at a solution of the original system. Solving the

system involves finding specific new elements of the ideal,

which can be generated by (i) multiplication of an existing

polynomial ψi with a monomial (which essentially shifts

the coefficients inside ci), and (ii) linear combinations of

polynomials, i.e., multiplication from the left of Cxℓ by

arbitrary matrices of full column rank. Notice in particular, that

diagonal scaling does not change the ideal. We therefore scale

each row of C to unit norm, which is a crucial prerequisite

for numerical accuracy of our algorithms. New members of

the ideal can be added to the system as additional rows in C.

Let the set of polynomials G = {γ1, . . . , γt} be a Gröbner

basis of I . We can define division by G by writing any

polynomial f ∈ C
[
x1, . . . , xn

]
as f =

∑t

k=1
hkγk+r, where

hk, r ∈ C
[
x1, . . . , xn

]
, and no monomial in r is divisible by

the leading term of any γk ∈ G. r is called the remainder of f

on division by G, or r = f
G

. The special properties of Gröbner

bases ensure that (i) f
G

is unique, and (ii) f
G

= 0 ⇔ f ∈ I .

Our solution methods rely on the special structure of the so-

called quotient-ring A := C
[
x1, . . . , xn

]
/I , defined as the

set of all remainders under division by G. In what follows,

we assume that the polynomial system has a finite number s

of discrete solutions1. Based on the Finiteness Theorem [18,

p.39], A is then a finite dimensional vector space with exactly

s dimensions over C, and we can choose a monomial basis

B = {xβ1 , . . . ,xβs}, e.g., the standard monomials or normal

set obtained from a Gröbner basis [18, p.38]. Importantly, this

normal set usually remains constant for different numerical

instances of the same problem, and therefore needs to be

computed only once. Denote xB as the vector of basis

monomials xB =
[
xβ1 . . . xβs

]T
. Then, any remainder

r can be written as r = cT
r xB .

Within the quotient ring we can define a multiplication map,

which can be represented by a multiplication matrix.

Proposition 1: [18, Prop. 4.1, p. 56] Let

f ∈ C
[
x1, . . . , xn

]
, and A = C

[
x1, . . . , xn

]
/I . Then

we define the mapping mf : A → A by the rule: if gG ∈ A,

then mf (gG) := f · g
G
∈ A. The map mf (.) is a linear map

from A to A. Furthermore, if r′ = mf (r), and r = cT
r xB ,

r′ = cT
r′xB , then cr′ = Mfcr, where Mf is an s× s matrix,

called the multiplication matrix.

The following two properties of the multiplication matrix

are the key to solving the system of polynomials.

Proposition 2: Let the polynomial system have a finite

number s of discrete solutions. Further, f ∈ C
[
x1, . . . , xn

]

is chosen such that the values f(pj) evaluated at a solution

pj , j = 1, . . . , s are distinct. Then

1) Eigenvalues [18, Thm 4.5, p.59]: The eigenvalues of the

multiplication matrix Mf are equal to the function f
evaluated at each solution. In particular, the eigenvalues

of the multiplication matrix Mxi
on A coincide with the

xi-coordinates of the solutions.

2) Eigenvectors [18, Prop. 4.7, p.64]: The left eigenvec-

tors of the matrix Mf are given by the row vectors[
p

β1

j . . . p
βs

j

]
for all solutions pj , j = 1, . . . , s.

Assuming a normal set xB is known, the problem of solving

a polynomial system has now been reduced to finding a

multiplication matrix Mxi
, for which we need to determine the

column vectors Mxi
(:, j) as the coefficients of the remainders

xix
βj

G

, j = 1, . . . , s. The key observation [21] is that

xix
βj =

∑
hkγk + Mxi

(:, j)T xB (29)

⇔ xix
βj − Mxi

(:, j)T xB =
∑

hkγk ∈ I (30)

In other words, we can read off the columns of Mxi
from

certain elements of the ideal. Byröd et al. [19] describe one

potential method how these elements can be found numerically

if the normal set is known, using only linear algebra, without

having to compute a Gröbner basis every time. This approach

has two main drawbacks: First, it requires a normal set,

which has to be computed once from a Gröbner basis (using

a suitable computer algebra system, e.g., Macaulay 2). The

normal set depends on the monomial order of this Gröbner

basis, which can be unnecessarily restrictive [22]. Further, the

1More precisely, we assume I is zero-dimensional, radical and does not
contain 1. We refer to [18] for what to do if these relatively mild assumptions
are not met.

matrix inversion involved in computing Mxi
can be poorly

conditioned for a particular normal set [6], which reduces

numerical accuracy.

To mitigate these issues, [6], [7] and [8] proposed to use a

set of (potentially) polynomial basis functions resulting from

coordinate transformations of the monomials. Not only can

an adaptively chosen transformation improve the conditioning,

it also avoids having to compute a Gröbner basis to obtain

a normal set. Unfortunately, [6], [7], [8] are all lacking a

proof that their proposed transformations produce indeed a

valid multiplication matrix. In what follows, we provide this

proof for a more general version of [6], as well as for two

solution algorithms based on [7] and [8] for a specific class of

polynomial systems. In Section III we apply these algorithms

to the 3DD problem.

The starting point for both algorithms is an expanded

version, Cexl+1 = 0, of the original system of polynomials.

The matrix Ce is obtained as follows: define a vector of

monomials of degree up to and including an integer l as

xl =
[
xl

1 xl−1

1 x2 . . . xn 1
]T

. The length of this vector

is nl =
(
n+l
n

)
. Similarly, define the vector of monomials of

total degree up to and including l+1 as xl+1 with length nl+1.

Finally, define the vector of monomials of total degree exactly

l + 1 as xk with length nk =
(

n+l
n−1

)
=

(
n+l+1

n

)
−

(
n+l
n

)
. Let

ℓi be the total degree of ψi. Multiply ψi by each monomial

of total degree up to and including l + 1 − ℓi, and add the

resulting polynomials to the system. Repeat this process for

all polynomials ψ1, . . . , ψu, and write the resulting extended

system of m polynomials as

Cexl+1 =
[
Ck Cl

] [
xk

xl

]
= 0 (31)

so that Ck and Cl have dimensions (m× nk) and (m× nl).
Notice that this process does not require any algebraic com-

putations, but merely assigning the coefficients of the original

polynomials to specific elements of Ce. This matrix can

be very large, but is usually extremely sparse (e.g., 0.5-5%

nonzero elements for instances of 3DD, depending on the

parameterization).

We will further need the unreduced multiplication matrix

M′
xi

of dimension (nl+1×nl) that maps each monomial in xl

to xi ·xl. In particular, M′
xi

(j, k) = 1 if xl+1(j) = xi ·xl(k).
As a consequence of this construction, we have

M′T
xi

xl+1(p) = pixl(p) (32)

For illustration, for n = 2, l = 1, i = 2, we have

x1 =
[
x1 x2 1

]
, x2 =

[
x2

1 x1x2 x2
2 x1 x2 1

]
, and

M′
x2

=
[

0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 0 1 0

]T

.

V. POLYNOMIAL SYSTEM SOLVERS

In this section, we describe 3 different polynomial sys-

tem solvers, starting with the normal-set-based method, then

introducing coordinate transformations to improve accuracy,

and finally using the right nullspace directly to compute the

multiplication matrix. We then see how these methods are

related.

A. Computing the multiplication matrix using a normal set

As described in [19], if a normal set xB is available for

the problem at hand (e.g., computed from the Gröbner bases

of example systems using a computer algebra program), the

multiplication matrix is computed as follows.

First, define the monomials xR as the set xixB\xB , i.e., the

monomials xixB that do not belong to the normal set. These

are the monomials that need to be reduced through division

by the ideal. Finally, let xE be the monomials in xl+1 that

belong neither in xB nor xR. By reordering the monomials

and the columns of Ce, we obtain

Cexl+1 =
[
CE CR CB

]


xE

xR

xB


 = 0 (33)

Let NT be the left nullspace of CE , i.e., NT CE = 0,

and decompose NT CR = QR =
[
Q1 Q2

] [
R1

0

]
using QR

factorization. Assuming that R1 is of full rank, we arrive at

[
NT CR NT CB

] [
xR

xB

]
= Q

[
R1 QT

1 NT CB

0 QT
2 NT CB

] [
xR

xB

]
= 0

⇒ Q1R1

[
IR T

] [
xR

xB

]
= 0, where T = R−1

1 QT
1 NT CB

In a slight deviation from our previous notation, let the

unreduced multiplication matrix M′
xi

correspond to the map

M′
xi

: xB →

[
xR

xB

]
induced by multiplication with xi. Then,

the multiplication matrix becomes [19]

Mxi
=

[
−TT Is

]
M′

xi
(34)

This method has two drawbacks: first, it requires determin-

ing the normal set, and second, the inverse in the expression

for T can be very ill-conditioned.

B. Using a general coordinate transformation

In [6], a specific coordinate transformation was proposed

to improve conditioning of this inverse. In what follows, we

prove that a very general form of coordinate transformation

indeed yields a valid multiplication matrix, of which the

methods presented in [6], [7], [8] are special cases.

The involutive test described in [8] provides a means to de-

termine the degree to which the system needs to be expanded

or “prolonged” (cf. (31)). Passing this test also eliminates

the need to determine a normal set. The 3DD polynomial

system (28) passed the involutive test after prolongation or

expansion to total degree l + 1 = 9, and no projection.

Another condition implied by this specific outcome of the

involutive test is that Ck is of full rank, and that Ce is of

rank nl+1 − s, i.e., it has an s-dimensional nullspace. These

important conditions ensure that the rank conditions needed

in the derivations below are fulfilled.

To start, we first decompose Ck (cf. (31)), such that

Ck = Q1R1E
T
1 = Q1

[
R11

0

]
ET

1 (35)

where E1 is an (nk × nk) column permutation matrix, i.e.,

(E1)
−1 = ET

1 , and R11 is upper triangular.

We now split QT
1 Cl =

[
DT

l1 DT
l2

]T
, so that Dl1 is of

dimension (nk × nl) and we can write

Ce = Q1

[
R11 Dl1

0 Dl2

] [
ET

1 0

0 Inl

]
(36)

A second QR-decomposition yields

Dl2 = Q2R2E
T
2 = Q2

[
R21 R22

0 0

]
ET

2 (37)

where R21 is upper-triangular, R22 is of dimension (nl −
s) × s, and E2 is an (nl × nl) permutation matrix (which

is required, since Dl2 is rank-deficient). We can further split

E2 =
[
E21 E22

]
, such that E22 is of dimension (nl × s).

We now have

Ce = Q1

[
Ink

0

0 Q2

] 

R11 Dl1E21 Dl1E22

0 R21 R22

0 0 0




[
ET

1 0

0 ET
2

]

=
[
Q′

1 Q′
2

] [
R′

0

]
ET (38)

where R′ is of dimension (nl+1 − s× nl+1) and upper trian-

gular, and E =
[
E1 0

0 E2

]
. Further, partition R′ =

[
R′

k R′
l

]

so that R′
k is of dimension (nl+1 − s × nk), and R′

l is of

dimension (nl+1 − s× nl).
We can now introduce a general, invertible coordinate

transformation matrix Ve (nl+1 × nl+1),

Ve =

[
V11 V12

0 V22

]
(39)

where V22 is of dimension (s×nl), and also define its inverse

as V−1
e =

[
Λ1 Λ2

]
, where Λ1 is of dimension (nl+1 ×

nl+1 − s), and Λ2 is of dimension (nl+1 × s).
Using this coordinate transformation and (38) in (31) yields

Q′
1R

′V−1
e VeE

T xl+1 = 0 (40)

Q′
1R

′Λ1

[
Inl+1−s T

] [
V11E

T
1 V12E

T
2

0 V22E
T
2

]
xl+1 = 0 (41)

⇔
[
V11E

T
1 V12E

T
2

]
xl+1 = −T

[
0 V22E

T
2

]
xl+1 (42)

where T = (R′Λ1)
−1R′Λ2. Notice that the introduc-

tion of the coordinate transformation has given us leverage

to improve the conditioning of the inversion of (R′Λk)
when computing T through judicious choice of Λk. Equa-

tion (42) means that we can now express every polynomial in[
V11E

T
1 V12E

T
2

]
xl+1 as a linear combination of monomi-

als in xB = V22E
T
2 xl, which we will choose as a basis of

the quotient ring.

For this basis, we will now prove that the multiplication

matrix can be formed as

Mxi
=

[
−TT Is

]
V−T

e ET M′
xi

E2V
T
22 (43)

using the unreduced multiplication matrix M′
xi

defined in

Section IV.

Proposition 3: If we choose the basis as xB = V22E
T
2 xl,

and compute the multiplication matrix as in (43), then xB(pj)
is a right eigenvector of MT

xi
.

Proof:

MT
xi

xB(pj)
(43)
= V22E

T
2 M′T

xi
EV−1

e

[
−T

Is

]
V22E

T
2 xl(pj)

=V22E
T
2 M′T

xi
EV−1

e

[
−T

[
0 V22E

T
2

]
[
0 V22E

T
2

]
]
xl+1(pj) (44)

(42)
= V22E

T
2 M′T

xi
EV−1

e VeE
T xl+1(pj) (45)

(32)
= V22E

T
2 pixl(pj) = pixB(pj) (46)

Finally, we need to compute the solutions pj from the

eigenvectors vj := cV22E
T
2 xl(pj) where c is some unknown

scaling coefficient (resulting, e.g., from restricting the eigen-

vectors to unit norm). We define v′
j := EV−1

e

[
−T

Is

]
vj ,

knowing from the proof that v′
j = cxl+1(pj). Noting that the

last n+ 1 elements of xl+1 are given by
[
x1 . . . xn 1

]
,

we undo the scaling and recover the solution as

pj = v′
j(nl+1 − n : nl+1 − 1)/v′

j(nl+1) (47)

Obviously, only the last n+ 1 elements of the vector v′
j will

actually need to be computed.

C. Using QR with column pivoting

A trivial choice for the coordinate transformation is Ve =
V−1

e = I, which is precisely the case presented in [7]. In this

case, the basis becomes xB =
[
0 Is

]
ET

2 xl = ET
22xl. Notice

that this algorithm only requires two QR factorizations, and

computing T reduces to solving an upper triangular system.

Contrary to [6], [7], this paper provides more flexibility in

the choice of Ve, the proof that it actually yields a valid

multiplication matrix, as well as guidance for the degree to

which to expand (via the involutive test [8]). The appeal of

this method is further that it requires no normal set and can

be implemented purely using standard linear algebra tools.

D. Using the right nullspace

The following method [8] proposed by Reid and Zhi (which

we will call R.Z. method for short), uses a different paradigm

to find the multiplication matrix. The key observation is that

if all solutions are distinct, and the dimension of the right

nullspace of Ce equals the number of solutions, s, then the

vectors xl+1(pj) evaluated at the solutions span the right

nullspace. In other words, if Bl+1 is any matrix whose

columns span the nullspace of Ce, then xl+1(pj) = Bl+1cj

for some coefficient vector cj .

Let Bl+1 =

[
Bk

Bl

]
be the right nullspace of Ce so that Bl

is of dimension (nl × s). Notice that xl+1(pj) = Bl+1cj and

xl(pj) =
[
0 I

]
xl+1(pj) = Blcj .

Form the SVD of Bl

Bl =
[
U1 U2

] [
S

0

]
VT (48)

such that U1 is of dimension (nl × s), and S is square.

Moreover, based on the involutive test, Bl is of rank s, i.e., S

is invertible.
We choose xB = UT

1 xl as basis for the quotient ring, and

form the multiplication matrix as [8]

Mxi
= S−1VT BT

l+1M
′
xi

U1 (49)

Since S is diagonal, the computation of its inverse is trivial.
Proposition 4: If we choose the basis of the quotient ring

as xB = UT
1 xl, and compute the multiplication matrix as

in (49), then xB(pj) is a right eigenvector of MT
xi

.
Proof:

MT
xi

xB(pj)
(49)
= UT

1 M′T
xi

Bl+1VS−1UT
1 Blcj

(48)
= UT

1 M′T
xi

Bl+1cj

=UT
1 M′T

xi
xl+1(pj)

(32)
= piU

T
1 xl(pj)

We can recover the solution pj from an eigenvector vj =
cUT

1 xl(pj) of MT
xi

by writing

v′
j = U1vj = cU1U

T
1 xl(pj)

= cU1U
T
1 Blcj = cU1U

T
1 U1SVT cj

= cBlcj = cxl(pj)

and by undoing the scaling as before.
Interestingly, as we will show, the R.Z. method can be cast

as a special instance of the general transformation described

in Section V-B. For this we proceed as follows (cf. (40)):

Q′
1R

′V−1
e VeE

T xl+1 = 0 (50)

Q′
1

[
Inl+1−s T

] [
V11E

T
1 V12E

T
2

0 V22E
T
2

]
xl+1 = 0 (51)

where we have (arbitrarily) imposed the structure
[
R′

k R′
l

]
=

[
Inl+1−s T

]
Ve =

[
V11 V12 + TV22

]

(52)

To make the correspondence to R.Z., we require that

V22E
T
2 = UT

1 . Also, we choose V12E
T
2 U1 = 0.

We obtain

V11 = R′
k (53)

V22 = UT
1 E2 (54)

R′
l = V12 + TUT

1 E2 | · ET
2 U1 (55)

T = R′
lE

T
2 U1 (56)

Backsubstitution of T yields

R′
l = V12 + R′

lE
T
2 U1U

T
1 E2 (57)

V12 = R′
l(Inl

− ET
2 U1U

T
1 E2) (58)

= R′
lE

T
2 (U1U

T
1 + U2U

T
2 − U1U

T
1)E2 (59)

= R′
lE

T
2 U2U

T
2 E2 (60)

In summary, the (not necessarily unique) choice of Ve =[
R′

k R′
lE

T
2 U2U

T
2 E2

0 UT
1 E2

]
will yield exactly the same multipli-

cation matrix as the R.Z. method.

VI. SIMULATION RESULTS

In this section, we evaluate the accuracy and efficiency of

solving the 3DD problem using QR decomposition (QR) (cf.

Section V-C), the R.Z. method (cf. Section V-D), and the

normal set-based method (Trad).

The simulation has been conducted on 1000 robot trajecto-

ries which are randomly generated with the two robots being

1 m - 2 m apart, and moving an average 3 m - 6 m between

taking distance measurements. We computed the solutions for

these 1000 samples using the three proposed techniques, and

using homotopy continuation (PHC) [12] as ground truth.

Our code was implemented in C++ on a Pentium T9400,

2.53 GHz Laptop, using inverse iterations with sparse LU

factorization [23] to compute the right nullspace of Ce for R.Z.

We obtained Ce of size (1100 × 715), with 41340 non-zero

elements, of total degree l+1 = 9 according to the involutive

test [8]. The QR method and R.Z. were run in 1.5 s and

0.37 s, respectively, while the normal set-based method runs

significantly faster (0.08 s), at the cost of having to determine

the normal set and potentially worse numerical conditioning.

This runtime is competitive with the fastest reported time of

any numerical solver for the 3DD problem.

To evaluate the accuracy of all the 40 solutions produced

by the presented three algorithms, we compared our solutions

to the PHC solutions. We first matched the 40 solutions of

QR, R.Z., and traditional normal set method to the closest

PHC solutions, and computed the average 2-norm of their

errors over all 40 solutions. The error distributions of these

three methods are shown in Fig. 2. The results show that the

accuracy of the QR and R.Z. methods is about two orders

of magnitude higher than the traditional normal set method,

particularly for the orientation. In case the accuracy obtained

is insufficient, the solutions of any of the three methods can

easily be refined using Newton steps.

We also tried to compare the accuracy of our algorithms

to that of Lee and Shim [17], which is currently the fastest

reported solution to the 3DD problem, but which requires

a special data type (30 significant digits) for accuracy. We

implemented their method in Matlab using the symbolic tool-

box to represent the coefficients symbolically for the required

precision. Unfortunately, at the time of publication we were

still unable to reproduce results of useable accuracy other

than for problems with integer coefficients. Improving our

implementation of their method is work in progress.

VII. CONCLUSION

In this paper, we have presented three fast algorithms to

compute the forward kinematics of the general Stewart-Gough

mechanism, or, equivalently, to compute the relative pose

between two robots based on distance measurements. The

algorithms use three different ways to compute the multi-

plication matrix, based on [19], [7], and [8], from whose

eigenvectors we can extract the solutions. We have proven that

these methods indeed produce valid multiplication matrices,

and shown their relationship.

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

||δ p ||

R
e
la

ti
v
e
 f
re

q
u
e
n
c
y

QR

R.Z.

Trad

(a) Position error with respect to PHC solutions

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

||δ q ||

R
e
la

ti
v
e
 f
re

q
u
e
n
c
y

QR

R.Z.

Trad

(b) Orientation error with respect to PHC solutions

Fig. 2. Relative pose error distribution generated from the error histogram
of 1000 samples. The markers on each curve indicate the centroids of each
bin in the histogram, and the y-axis shows the relative frequency of samples
in the bins. The QR and R.Z. methods shows significantly improved accuracy
over the traditional normal set method, at the cost of increased run time.

Our simulation results have shown that we can compute the

solution in less than 1.5 s, and most solutions achieve an accu-

racy in the order of 10−8. Our methods’ major advantage over

currently available algorithms is their ease of implementation

and the fact that they only use standard double data types and

linear algebra libraries.

The hybrid algebraic-numeric techniques for solving poly-

nomial systems used in this paper have only very recently

appeared in the robotics and computer vision. Keeping in mind

that many geometric problems in robotics can be converted to

a system of polynomials, we believe that fast and principled

polynomial system solvers such as the ones presented in this

paper can be the key to solving interesting long-standing as

well as new research problems.

ACKNOWLEDGEMENTS

This work was supported by the University of Minnesota

(DTC), and the National Science Foundation (IIS-0643680,

IIS-0811946, IIS-0835637). The authors gratefully acknowl-

edge Ryan Elmquist for helping with code implementation.

REFERENCES

[1] N. Trawny, X. S. Zhou, K. X. Zhou, and S. I. Roumeliotis, “3D relative
pose estimation from distance-only measurements,” in Proc. of the

IEEE/RSJ International Conference on Intelligent Robots and Systems,
San Diego, CA, Oct. 29 – Nov. 2, 2007, pp. 1071–1078.

[2] D. Stewart, “A platform with six degrees of freedom,” in Proc. of the

Inst. of Mechanical Engineers, vol. 180, no. 15, 1965, pp. 371–376.
[3] M. Raghavan, “The Stewart platform of general geometry has 40

configurations,” Journal of Mechanical Design, vol. 115, pp. 277–282,
1993.

[4] C. W. Wampler, “Forward displacement analysis of general six-in-
parallel SPS (Stewart) platform manipulators using soma coordinates,”
Mechanism and Machine Theory, vol. 31, no. 3, pp. 331–337, 1996.

[5] P. Dietmaier, “The Stewart-Gough platform of general geometry can
have 40 real postures,” in Advances in Robot Kinematics: Analysis

and Control, J. Lenarcic and M. L. Husty, Eds. Kluwer Academic
Publishers, 1998, pp. 7–16.

[6] M. Byröd, K. Josephson, and K. Åström, “Improving numerical accuracy
of Gröbner basis polynomial equation solvers,” in Proc. of the IEEE

International Conference on Computer Vision, Rio de Janeiro, Oct. 14–
20, 2007, pp. 1–8.

[7] ——, “A column-pivoting based strategy for monomial ordering in
numerical Gröbner basis calculations,” in Proc. of the 10th European

Conference on Computer Vision, Marseille, France, Oct. 12–18, 2008.
[8] G. Reid and L. Zhi, “Solving polynomial systems via symbolic-numeric

reduction to geometric involutive form,” Journal of Symbolic Computa-

tion, vol. 44, no. 3, pp. 280–291, Mar. 2009.
[9] W. Auzinger and H. J. Stetter, “An elimination algorithm for the compu-

tation of all zeros of a system of multivariate polynomial equations,” in
Numerical Mathematics (Singapore 1988), Int. Ser. Numer. Math. Basel:
Birkhäuser, 1988, vol. 86, pp. 11–30.

[10] P. R. McAree and R. W. Daniel, “A fast, robust solution to the Stewart
platform forward kinematics,” Journal of Robotic Systems, vol. 13, no. 7,
pp. 407–427, 1996.

[11] C. W. Wampler, A. P. Morgan, and A. J. Sommese, “Numerical contin-
uation methods for solving polynomial systems arising in kinematics,”
Journal of Mechanical Design, vol. 112, no. 1, pp. 59–68, 1990.

[12] J. Verschelde, “Algorithm 795: PHCpack: A general-purpose solver for
polynomial systems by homotopy continuation,” ACM Transactions on

Mathematical Software, vol. 25, no. 2, pp. 251–276, 1999.
[13] L. Rolland, “Synthesis of the forward kinematics problem algebraic

modeling for the general parallel manipulator: displacement-based equa-
tions,” Advanced Robotics, vol. 21, no. 9, pp. 1071–1092, Sep. 2007.

[14] D. Cox, J. Little, and D. O’Shea, Ideals, Varieties, and Algorithms,
3rd ed. Springer, 2008.

[15] M. L. Husty, “An algorithm for solving the direct kinematics of general
Stewart-Gough platforms,” Mechanism and Machine Theory, vol. 31,
no. 4, pp. 365–380, 1996.

[16] C. Innocenti, “Forward kinematics in polynomial form of the general
Stewart platform,” Journal of Mechanical Design, vol. 123, no. 2, pp.
254–260, 2001.

[17] T.-Y. Lee and J.-K. Shim, “Improved dialytic elimination algorithm
for the forward kinematics of the general Stewart-Gough platform,”
Mechanism and Machine Theory, vol. 38, pp. 563–577, Jun. 2003.

[18] D. Cox, J. Little, and D. O’Shea, Using Algebraic Geometry, 2nd ed.
Springer, 2005.

[19] M. Byröd, Z. Kukelova, K. Josephson, T. Pajdla, and K. Åström, “Fast
and robust numerical solutions to minimal problems for cameras with
radial distortion,” in Proc. of the IEEE Conference on Computer Vision

and Pattern Recognition, Anchorage, AK, Jun. 23–28, 2008, pp. 1–8.
[20] H. Stewénius, C. Engels, and D. Nistér, “Recent developments on

direct relative orientation,” International Journal of Photogrammetry and

Remote Sensing, vol. 60, no. 4, pp. 284–294, Jun. 2006.
[21] Z. Kukelova and T. Pajdla, “A minimal solution to the autocalibration of

radial distortion,” in Proc. of the IEEE Conference on Computer Vision

and Pattern Recognition, Minneapolis, MN, Jun. 18–23, 2007, pp. 1–7.
[22] H. J. Stetter, Numerical Polynomial Algebra. SIAM: Society for

Industrial and Applied Mathematics, 2004.
[23] C. Gotsman and S. Toledo, “On the computation of null spaces of

sparse rectangular matrices,” SIAM Journal on Matrix Analysis and

Applications, vol. 30, no. 2, pp. 445–463, May 2008.

