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Abstract—In highly constrained settings, e.g., a tentacle-like
medical robot maneuvering through narrow cavities in the body
for minimally invasive surgery, it may be difficult or impossible
for a robot with a generic kinematic design to reach all desirable
targets while avoiding obstacles. We introduce a design optimiza-
tion method to compute kinematic design parameters that enable
a single robot to reach as many desirable goal regions as possible
while avoiding obstacles in an environment. We focus on the kine-
matic design of piecewise cylindrical robots, robotic manipulators
whose shape can be modeled via cylindrical components. Qur
method appropriately integrates sampling-based motion planning
in configuration space into stochastic optimization in design space
so that, over time, our evaluation of a design’s ability to reach
goals increases in accuracy and our selected designs approach
global optimality. We prove the asymptotic optimality of our
method and demonstrate performance in simulation for (i) a
serial manipulator and (ii) a concentric tube robot, a tentacle-
like medical robot that can bend around anatomical obstacles to
safely reach clinically-relevant goal regions.

I. INTRODUCTION

In a cluttered environment, the ability of a robotic manipu-
lator to reach desired targets while avoiding obstacles depends
significantly on the robot’s kinematic design. A robot’s kine-
matic design can be seen as a set of kinematic parameters that
define a robot’s shape and are fixed throughout the robot’s
use, e.g., the length of each link of a serial manipulator or
the lengths and curvatures of tubes in a concentric tube robot
[8, 11]. In highly constrained settings, e.g., a tentacle-like
robot maneuvering through narrow cavities in the body for
minimally invasive surgery, it may be difficult or impossible
for a robot with a generic kinematic design to reach all
desirable targets while avoiding obstacles (see Figure 1).

Fortunately, advances in methods that enable the rapid
fabrication of customized robot designs is introducing the
potential to create robots that are kinematically optimized
on a task-specific basis. Advances in 3D printing enable the
rapid creation of robots with links of customizable lengths.
Customized medical robots, like concentric tube robots, can be
created in minutes by shape-setting or 3D printing [10, 22].
Our objective is to computationally optimize the kinematic
design parameters of a robotic manipulator on a task-specific
basis: given the shapes of obstacles in the environment as well
as goal regions the robot should be capable of reaching, we
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Fig. 1. Optimizing the kinematic design of a robotic manipulator can enable
it to reach more goal regions in a cluttered environment. In this example,
the objective is to optimize the design of a concentric tube robot, a surgical
manipulator composed of nested, precurved tubes (cyan, yellow, magenta)
whose lengths and curvatures can be customized (top). The objective is
to move from a bronchial tube (white arrow) to reach goal regions (green
spheres) in the lung while avoiding anatomical obstacles, e.g., blood vessels
(red, blue) and bronchial tubes (off-white). A generic design may fail to
reach some goal regions in a cluttered environment (right column), while an
optimized design (left column) has the potential to reach more goal regions.

aim to compute a single robot design that can reach as many
of the goal regions as possible while avoiding obstacles.
In this paper, we specifically focus on optimizing the



kinematic design of piecewise cylindrical robots, a subclass
of robotic manipulators whose shape can be modeled via a
connected sequence of cylindrical components. This model
can be applied to standard multi-link robot arms by modeling
each link as a cylinder, where the length of each link is a
kinematic design parameter. Another type of robot that can
be modeled as piecewise cylindrical is the concentric tube
robot, a tentacle-like robot for minimally invasive surgery
that can curve around anatomical obstacles to reach surgical
sites in constrained spaces [8, 11]. Concentric tube robots
are composed of nested, pre-curved tubes, where each tube
is typically shaped with a straight section followed by a
pre-curved constant-curvature section. Each of the robot’s
component tubes can be independently rotated or extended,
enabling the entire device to change shape as the nested tubes
elastically interact. This robot’s kinematic design parameters
include the pre-curvatures and lengths of each constituent tube.
These parameters have a significant impact on the surgical
targets reachable by the device in constrained spaces, so
proper selection of kinematic design parameters for a patient’s
anatomy is critical to the success of a medical procedure.

Optimizing a robot’s kinematic design on a task-specific
basis is challenging. We desire to compute high quality designs
reasonably quickly (i.e., minutes, not days), particularly for
medical applications in which the physician customizes the
robot design based on a patient-specific anatomy identified
in medical images. However, the kinematic design space of
a robot may be large, and for any candidate design we
must evaluate whether that design can move from an initial
configuration to the goal regions while avoiding obstacles. This
implies we need to compute motion plans to multiple goal
regions for successively selected designs, but current state-
of-the-art motion planners based on sampling-based methods
cannot determine with certainty in finite time whether a goal
region can be reached by a particular design.

Our novel contributions are as follows. First, we introduce
a new method for optimizing the kinematic design parameters
of a single piecewise cylindrical robot on a task-specific basis
by appropriately integrating sampling-based motion planning
into iterations of a stochastic optimization method for design
selection. We implement the integration so that, over time,
our reachability evaluations increase in accuracy and our
design selections improve toward global optimality. Second,
we analyze our algorithm and prove asymptotic optimality,
i.e., almost sure convergence to a globally optimal design,
which guarantees that our method avoids getting trapped in
local optima. Third, we demonstrate the broad applicability
and effectiveness of our design optimization method via evalu-
ations for two distinct piecewise cylindrical robots: (i) a 4-link
serial manipulator, and (ii) a concentric tube medical robot.

II. RELATED WORK

Our approach to optimizing the kinematic design of piece-
wise cylindrical robots integrates prior work in robot design
optimization, stochastic search, and robot motion planning.

Prior work has investigated combinatorial approaches to de-
sign optimization over a finite and discrete set of robot fea-
tures. Examples include optimizing over discrete components
of modular robots [14, 29], monopedal jumping robots [26],
snake-like and multi-modal robots [24, 33], and kinematic
chains such as proteins [7]. In this paper, we focus on piece-
wise cylindrical robots with continuous design parameters.
There has been extensive work on optimizing the kinematic
design of serial manipulators. Approaches have optimized var-
ious metrics and have used genetic algorithms [6, 16, 19, 30],
interval analysis [21], geometric methods [32], and grid-
based methods [25]. These methods typically lack theoretical
performance guarantees or achieve computational tractability
by imposing significant assumptions on the robot’s workspace
and by using simplified kinematic models, which limit the
effectiveness and applicability of the optimization procedure.
Kinematic design optimization for concentric tube robots
is particularly challenging due to their complex kinematics,
which is computationally expensive to evaluate due to the
complex elastic and torsional interactions of their constituent
tubes. Morimoto et al. present a complementary approach to
automatic design optimization by providing a human with an
intuitive interface to manually design the tubes [23]. Bergeles
et al. computationally optimize the robot’s design to reach a
set of points without colliding with anatomical obstacles [2].
For computational efficiency, they reduce the motion planning
problem to finding goal configurations that can reach the
targets and do not offer a global optimality guarantee. Burgner
et al. combine a grid-based evaluation of the robot’s kinematics
in configuration space with a nonlinear optimization method
over the design space to maximize the reachable region of
points subject to anatomical constraints [3]. Burgner et al.
extended this work to characterize the workspace of concentric
tube robots [4, 5]. Ha et al. present a method for generating
designs to maximize device stability [12]. By focusing only on
computing designs and goal configurations, the works above
cannot guarantee that a collision-free path from start to goal
exists for the computed design. Torres et al. integrated a
motion planner into concentric tube robot design to ensure
the computed design is able to avoid obstacles en route to
specific points [31], but offers slow performance. Baykal et al.
investigated computing minimal sets of concentric tube robot
designs to reach multiple targets [1], although no analysis was
provided regarding a guarantee on optimality. In this paper, we
focus on the broader class of piecewise cylindrical robots.

III. PROBLEM DEFINITION

A robot’s design d is an n-dimensional vector of kinematic
parameters that correspond to physical properties of the robot’s
shape that are fixed for the duration of a given task. This vector
includes kinematic parameters such as the length of each link
of a serial manipulator or the lengths and curvatures of tubes
in a concentric tube robot. The design space D C R” of a
robot is the n-dimensional compact set corresponding to the
space of all possible kinematic designs of the robot.



We assume that the robot operates in a workspace W C R¥
containing a compact set of obstacles O C W, where
k € {2,3}. The robot should be designed so it can reach
(while avoiding obstacles) a set of m user-specified goal
regions, where each goal region G; C W, i € {1,...,m}
is defined as a volume of workspace positions. We define
G={G;:i=1,...,m} as the union of the goal regions.

Let the compact set Q C R denote the d-dimensional
configuration space of the robot. Since the shape of a robot
at any configuration is a function of its design d, the set of
configurations for which the robot’s shape does not intersect
an obstacle is dependent on d. Thus, we denote the set of
collision-free configurations for a robot of design d as Qfi*® C
Q. We model the shape of a piecewise cylindrical robot with
design d € D at configuration q € Q by the mapping
Shape : Dx Q — ([0, 1] — W), which defines the curve of the
robot’s backbone, and a radius r of its circular cross-section.
Note that Shape(d, q)(0) and Shape(d,q)(1) correspond to
the robot’s base and end-effector points respectively. We
assume Shape is computed using an accurate kinematic model.
We define qp € Q as the robot’s start configuration. The
robot’s motion is a path in the configuration space Q defined
by the continuous function o : [0, 1] — Q, where ¢(0) = qo.
A path o executed under robot design d is collision-free if it
lies entirely in the collision-free configuration space, that is,
if o(7) € Q¢ for all 7 € [0,1].

Our objective is to compute an optimal robot design d* €
D that enables the robot to reach as many goal regions in
G as possible in a safe manner, i.e., via collision-free paths
that avoid the workspace obstacles O. The quality of a design
d € D is defined with respect to the extent of the design’s
reachability to the goal regions in G. That is, the objective
function value of d is expressed as the percentage of goal
regions in G that are reachable with design d relative to the
total number of goal regions in G. Formally, the reachability
of design d is given by the mapping R(d) : D — [0, 1]:

_ |GoalRegionsReachable(d)|
B 9 ’

where GoalRegionsReachable(d) : D — 29/ denotes the set
of goal regions that the robot of design d can reach with its end
effector by following a collision-free path. R(d) expresses the
reachable goal percentage of the robot under design d, which
we seek to maximize. We formalize the objective of kinematic
design optimization as follows: Given an environment W C
R (where £ = 2 or 3), a set of obstacles @ C W, and a
set of user-specified goal regions G, generate a design d* that
maximizes the reachable goal percentage, i.e.,

R(d) : (D

d* € argmax R(d). (2)
deD

IV. METHODS

In this section, we present our algorithm for optimizing the
kinematic design parameters of a single piecewise cylindrical
robot to maximize the robot’s reachable goal percentage while
avoiding obstacles in a task-specific environment.

A. Method Overview and the Key Challenge

Our design optimization approach combines a stochastic
search in the robot’s design space D with a sampling-based
motion planner in the robot’s configuration space Q to ef-
ficiently generate designs with high reachability. To select
candidate designs for evaluation, we use Adaptive Simulated
Annealing (ASA) [13], a global optimization algorithm. For
each selected design, we use the Rapidly-exploring Random
Tree (RRT) [17] algorithm to estimate the design’s reachable
workspace and evaluate its reachable goal percentage. We
provide an overview of our approach in Algs. 1 and 2 and
formally prove the method’s asymptotic optimality in Sec. V.

To ensure that we converge toward a globally optimal
design, a key challenge we must address is that state-of-the-
art, practical motion planners cannot guarantee completeness
[17], i.e., they cannot always in finite time answer the question
of whether a collision-free motion plan exists from the start
configuration to a goal region. This limitation of current state-
of-the-art motion planners introduces a significant challenge
for design optimization; to use a standard optimization algo-
rithm to optimize the design d in equation 2, a motion planner
must evaluate the reachable goal percentage accurately and
in finite time in each iteration of the optimization algorithm.
Commonly used sampling-based motion planners only offer
probabilistic completeness (and in some cases also asymptotic
optimality in terms of path quality), meaning the probability
that they will produce a collision-free path (if one exists)
to a goal region approaches 1 as more time is spent [17].
Terminating a sampling-based motion planner after finite time
may result in an incorrect computation of the reachable goal
percentage. The lack of full completeness makes it impossible
to simply plug a standard sampling-based motion planner into
a standard optimization algorithm and expect convergence
toward a globally optimal design. We address this challenge
by appropriately integrating sampling-based motion planning
into stochastic optimization in design space so that, over time,
our reachable goal percentage evaluations increase in accuracy
and our selected designs approach global optimality.

B. Evaluating a Design’s Reachable Goal Percentage

Evaluating the objective function value R(d) in equation
(1) for an arbitrary design d € D requires computing
GoalRegionsReachable(d), the set of goal regions that design
d can reach by executing collision-free paths. Thus, evaluating
the reachability of a design is fundamentally a motion planning
problem, which is known to be PSPACE-hard [27]. This
renders the use of exact evaluation methods computationally
intractable and motivates the use of a sampling-based motion
planning algorithm, such as the Rapidly-exploring Random
Tree (RRT) [17], to generate approximations of a design’s
reachability (albeit an approximation that can improve over
time, as will be discussed in Sec. IV-D).

For a given design d € D and a start configuration qg, the
RRT algorithm incrementally constructs a tree of configura-
tions that can be reached by collision-free paths from the root
of the tree, qp. For a given design, we run the RRT algorithm



Algorithm 1 Select and evaluate a kinematic design

Algorithm 2 Iterative design optimization

Input:

G: set of goal regions

O: set of environmental obstacles

dcurrent: previously considered robot design

T': ASA’s current annealing temperature

i: number of RRT iterations to execute
Qutput:

dpew: new robot design

Ryew: approximate reachable goal percentage of dyey
dyew < SampleDesign(deurent, T);
: goalRegionsReached < RRT(dyew, ¢, O);
. Runew ¢ |goalRegionsReached|/|G;
return d,y, Rnew;

L

for ¢ € Ny iterations and iterate over the configurations in
the constructed tree to compute the set of goal regions that
can be feasibly reached by the robot with design d (Line 2,
Alg. 1). From this we can approximate the design’s reachable
goal percentage in a computationally tractable manner (Line
3, Alg. 1). Because RRT provides probabilistic completeness,
as we increase the iterations ¢ of RRT, the probability of our
approximation R;(d) being equal to the true R(d) approaches
1. For any finite ¢, our approximations of the reachable goal
percentage at each iteration is ensured to be a lower bound of
the ground-truth reachability, i.e., R;(d) < R(d).

A key challenge is appropriately setting the number of
iterations ¢ the RRT will run for. In Sec. IV-D, we introduce
an approach to setting ¢ in Alg. 1 that ensures asymptotic
optimality of the design optimization.

C. Selecting Designs

We use the ASA algorithm [13, 20] for optimizing the
kinematic design to maximize the reachable goal percentage.
We use ASA because it is a global optimization method that
escapes local optima, it is efficient in practice for problems
in high dimensional spaces, and it has favorable algorithmic
properties which we exploit. Specifically, we are able to use
sampling-based motion planning in each iteration of ASA in
a manner that ensures asymptotic optimality of the design, as
discussed in Sec. IV-D.

Our ASA-based algorithm is shown as Alg. 2 and operates
similar to a hill climbing algorithm in that it is centered on
a design dcyrene that it incrementally attempts to improve.
However, unlike a hill climbing algorithm, the algorithm may
in some iterations select an inferior design, which enables es-
caping local minima. Next designs are determined by sampling
a new design (SampleDesign; Line 1, Alg. 1) and deciding
whether to accept that new design (Accept; Line 6, Alg. 2),
with both procedures being highly dependent on a temperature
parameter 7' € R>o. Accept returns true if the sampled
design d’ is higher quality than deygene (i.€., R’ > Reurent)
or with some probability (dependent on T') if d’ is inferior.
The temperature variable is initially set to a high value and

Input:
G: set of goal regions
O: set of environmental obstacles
Tinit: initial number of RRT iterations
ia: additional RRT iterations after each sample
dinic (optional): initial design for the search
Qutput:
d*: a robot design that maximizes (1)
IHERS Z.initial; T + 71initial; Rcurrem — 0; R* < O;
2: deyrrent < random initial design or djy if provided;
3 d* dcurrent;
4: while allotted time remains do
5: d. R « Algorithm1(G, O, deyrent, T 1)
6 if Accept(R’ , Rcmem, T) then
7 Clcurrent — dA/;
8 RCUlTth <; R/;
9: if R > R* then

10 d* « d/;
11: R* « R/;
12: 14141

13: T < UpdateTemperature(T);
14: return d*

is decreased after each iteration based on a cooling schedule
(Alg. 2, Line 13). When T is high, ASA is more likely to
sample states that are far away from dcymen and also more
likely to probabilistically accept inferior designs, which leads
to exploratory behavior initially. As 7' is cooled down over
time, ASA samples states in smaller neighborhoods around
dcurent and is increasingly less likely to accept inferior designs,
which leads to eventual convergence to a high quality design.
We cache the best found design (Alg. 2, Line 10) so the best
found design is returned when the algorithm terminates.

D. Integrating Motion Planning into Stochastic Optimization

A key requirement to converging toward a globally optimal
design is an accurate evaluation of any candidate design’s
reachable goal percentage. This implies we need to compute
motion plans to multiple goal regions for each design consid-
ered in the optimization, but current state-of-the-art motion
planners based on sampling-based methods cannot specify
with certainty in finite time whether a goal can be reached
by a particular design.

To address this challenge, we use a simple-to-implement
idea: we incrementally increase the number of RRT iterations
by ia after each sampled design (Line 13, Alg. 2). This
approach ensures that our approximations become increasingly
accurate over time. This approach is sufficient for establishing
the asymptotic optimality of our algorithm (see Sec. V). This
approach also has a secondary benefit: it enables us to more
quickly (but more coarsely) evaluate many designs in the
initial iterations and subsequently evaluate candidate designs
with higher accuracy (albeit at a slower rate) in later iterations.



V. ANALYSIS

We prove under mild assumptions that the design computed
by our algorithm almost surely converges [9] to a globally
optimal design. The outline of our proof is as follows. First,
we establish that the set of optimal designs with respect to the
problem in equation 2 has strictly positive measure. Then, we
show that by property of the ASA algorithm, optimal designs
will be sampled and evaluated infinitely often. We conclude
by proving that, eventually, an optimal design will be sampled
and evaluated accurately by the RRT algorithm.

A. Preliminaries

Let v : @ x @ — R>( be the distance function in Q for
any arbitrary d € D defined by v(q,q’) = ||Shape(d, q) —
Shape(d, q')||o [17]. For any configuration q € Q, the open
ball of radius € centered at q, {q' € Q | v(q,q’) < €},
is denoted by B.(q). A collision-free path under design d,
o:[0,1] — Qg., is said to have &-clearance if

Va € o([0,1]) inf |[Shape(d,q) — ol > &,

where the infimum is taken over all the obstacle points in the
workspace, with a slight abuse of notation in taking the norm
of a function and the obstacle point o. This analysis focuses on
the piecewise cylindrical robot’s backbone but can extend to
a cross-sectional radius r > 0 by appropriately accounting for
the thickness whenever measuring a distance from the robot’s
shape to an obstacle in the workspace.

Assumption 1 (Goal Regions as Open Sets). Each goal region
G; €W, i € [m], is defined as an open set.

Assumption 2 (Continuity of the Shape Function). Shape :
Dx Q — ([0,1] — W) is continuous over the domain D x Q.

Assumption 1 rules out pathological problem instances
where only a single optimal design lying on the boundary of
the design space exists. Assumption 2 guarantees that robots of
similar designs have similar shapes at similar configurations.

B. Sampling Optimal Designs Infinitely Often

Lemma 1 (Paths with Non-zero Clearance). Under any design
d € D, any collision-free path o : [0,1] — Q_g’ee has &-
clearance for some & > Q.

Proof: For any d € D and o : [0,1] — Qg.., define
W, = {Shape(d, q, s) : q € ([0,1]),s € [0,1]}, i.e., the set
of workspace points the robot occupies along the path o. Note
that W,, is compact since Shape is continuous on a compact
domain. Since O is also compact and W,, and O are disjoint
by definition of collision-free paths, it follows by continuity
of norms that 0 < inf {||w — 0| : 0 € O, w € W, } = £ for
some £ > 0. ]

Lemma 2 (Sufficient Condition for Reachability). Consider a
design d and path with -clearance o : [0,1] — Qﬁ“, with
(1) = dgoat € Q- Then, under any design d’ that satisfies

sup ||Shape(d, o(t)) — Shape(d’, o(t))l < &,
t€(0,1]

the robot can execute the same path o to the goal configuration
Qgoal Without colliding with the obstacles.

Proof: By the triangle inequality, for all q € ¢([0, 1]):
< i —
¢ < inf [|Shape(d, q) — of|

< ||Shape(d, q) — Shape(d’, q)||o+
inf [|Shape(d’, q) —
[nf [|Shape(d’, ) — oflo

< &+ inf ||Shape(d’,q) — 0||s0,
ocO

which implies that inf,co ||Shape(d’, q) — o||o > 0. [ |

Let R* = maxqep R(d) denote the optimal objective value
and let D* = {d € D | R(d) = R*} be the optimal
set of designs with respect to the problem in equation 2.
The following lemmas establish that designs from the optimal
design set will be sampled infinitely often.

Lemma 3 (Positive Measure of Optimal Designs). The set
of optimal designs, D* C D, has strictly non-zero Lebesgue
measure, i.e., u(D*) € Ry.

Proof: Consider an arbitrary optimal design d* € D that
reaches the set of goal regions G* C G, where R(d*) =
|G*|/IG| = R*. By Lemma 1, this implies that for each
goal region g € G, there exists a path with {,-clearance,
o :[0,1] — Qg for some &, > 0, with o(1) = qgou such
that p, € g, where p, = Shape(d*, qeou)(1) denotes the
position of the end-effector at configuration qgoq. Since the
goal region g is an open set (Assumption 1), there exists a
constant ¢, € Ry such that B, (py) C g.

Let ¢; = min{e,,§,} be a strictly positive constant, for
some &, > 0 as in Lemma 1. By the continuity of the Shape
function (Assumption 2), we have that Shape is uniformly
continuous on the compact domain D x Q. Thus, for the
constant e_’q, there exists some d, € Ry such that for any
design d € D/, it follows that

|IShape(d, q) — Shape(d”, q)||ec < €, Vq € o([0,1]),

where D' = {d' € D | ||d' — d*|| < &g}

Lemma 2 implies that all designs d € D’ can traverse the
path o : [0,1] — Q% to reach qgou without colliding with
the obstacles. Moreover, by definition of the supremum norm,
the end-effector of the robot under design d at configuration
Qgoal 18 fully contained in goal region g. Thus, we have shown
the existence of a non-empty, open set of designs D’ that can
reach goal region g by a continuous, collision-free path.

Following the same line of reasoning, there exist strictly
positive constants ¢, and €, = min{ey,&,} for each goal
region g € G*. Since G* is a finite set, let € = mingeg- e’g be
a strictly positive constant. It follows by generalization of the
previous argument for a single goal region that there exists
a non-empty, open set of optimal designs, D" = {d” € D |
[|d” —d*||ec < d}, for some § € R, that is, R(d) = R* for
all designs d € D”. Lebesgue measure is strictly positive on
non-empty, open sets, thus u(D”) € Ry. Since D” C D* by
definition, it follows that u(D*) € R. |



Lemma 4 (Frequency of Sampling Optimal Designs). Alg. 2
will sample designs from the optimal design set D* infinitely
often.

Proof: 1t is known that designs that are an element of
any subset D’ C D with non-zero measure will be sampled
infinitely often by the ASA algorithm [13, 20]. Thus, Lemma 3
yields the result. [ |

C. Asymptotic Optimality

Let ). be a random variable that denotes the maximum
reachable goal percentage attained over all the designs sampled
in optimization iterations 1,..., k.

Theorem 5 (Asymptotic Optimality). The solution generated
by Alg. 2 almost surely converges to a globally optimal design
d* € D*, ie.,

}P’(lim yk:R*> =1.
k—o0
Proof: Application of Lemma 4 implies that the optimal

set of designs D* C D will be sampled infinitely often. Let
j € N denote the 7™ occurrence of sampling any arbitrary
optimal design d* € D* and let I; denote the number of
iterations that the RRT algorithm is executed for. Note that by
the procedure used to increase the number of RRT iterations
by ian € Ny (Alg. 2) after each sampled design, we have that
I; +1 < Ij4 forall j and that 1 < I.

For each occurrence of sampling an optimal design d* €
D, a random approximation of the reachable goal percentage
is generated by running the RRT algorithm for I; iterations.

Let G;(d*) and R;(d*) = %d‘*)‘ denote the approximation
of GoalRegionsReachable(d*) and R(d*) for the j® sampled
optimal design respectively. For any arbitrary e € R, let A;
denote the event |R;(d*) — R*| > e for each j. Note that
event A; is equivalent to the event that the RRT algorithm
fails to find a collision-free path to at least one goal region

g€egr \Q](d*) within [ iterations. Thus, we have

P(4;) =P (3g€ g \G;(d") < Y P(ge g \g;(d)
geG*
<Y ae™ = (glae™h,
geG*
for some constants a,b, where the first inequality is by the
union bound and the second by RRT’s exponential decay of the
probability of failure to find a path after I; iterations [15, 18].
Consider the sum of the probabilities of A; over all j:

o0 o0 o0 ]
S P(4) <10 lae s < 30 (67 e
j=1 j=1 j=1

Gl
= b1 < 0.

By the Borel-Cantelli Lemma we  have that

P (limsup; ., A;) = 0, that is, the probability that

A; occurs infinitely often is 0. This implies that

P (liminf; o |R;(d*) — R*| <€) = 1, which is precisely
the definition of R;(d*) 3 R*.

Thus, with probability 1, at least one optimal design d* €
D* will be sampled and evaluated accurately as the number
of optimization iterations of Alg. 2 approaches infinity. Since
the best solution found thus far is cached in Alg. 2, it follows
that V), =3 R*. [ ]

VI. RESULTS

We apply our design optimization algorithm to two distinct
piecewise cylindrical robots: (i) a serial manipulator and (ii)
a concentric tube robot, a tentacle-like robot designed for
minimally invasive medical procedures. We assess the perfor-
mance of our method (ASA+MP) in computing designs with
high reachable goal percentage and compare its computational
efficiency and results with the following variants of our method
and other state-of-the-art design optimization algorithms.

e NM+G: The Nelder-Mead optimization algorithm is used
instead of ASA for sampling designs. For evaluation of
the reachable goal percentage, a grid-based approach is
used instead of motion planning; the configuration space
is discretized into a grid and the robot configuration at
each grid point is evaluated to determine if it is collision-
free and reaches a goal region [3].

e NM+MP: Nelder-Mead is used for optimizing the design.
In contrast to prior work using Nelder-Mead [3], we use
motion planning using the same number of initial and
additional RRT iterations as our algorithm to approximate
the reachable goal percentage of candidate designs.

e ASA+G: In this simplified form of our approach, we use
ASA to sample designs, but we use the grid approach (as
described in NM+G) to evaluate reachable goal percent-
age for a candidate design.

e RRT of RRTs: An RRT-based algorithm is run both in
the design space [31] and in the configuration space for
estimating reachable goal percentage.

We emphasize that the grid-based algorithms (ASA+G and
NM+G) only consider final configurations when evaluating
reachable goal percentage during design optimization. This
implies that grid-based evaluations generate upper bounds on
the ground-truth reachable goal percentage, since the actual
motion of the device from its start configuration to a goal
region is not considered, and no motion may be feasible due
to obstacles. In our results graphs, we do not display this
upper bound; instead, we run a post-processing step (that is not
counted towards method computation time) and estimate the
reachable goal percentage of each returned design by running
the RRT algorithm for 300,000 iterations.

We implemented all design optimization algorithms in C++.

The experiments were conducted on a PC with two 2.40 GHz
Intel Xeon E5620 processors (8 cores total) and 12 GB RAM.

A. Design Optimization of a 4-link Serial Manipulator

We consider the design optimization of a serial manipulator
with 4 revolute joints and 4 straight links operating in a 2D
environment. The configuration space of the robot is defined
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First row: Example configurations of robot designs (where the links are colored green, cyan, magenta, and orange) computed by our algorithm for

three randomly generated 2D environments containing obstacles (red) and a grid of goal regions colored green for grid cells reachable using the optimal
design and blue for unreachable cells. Second row: In contrast to optimal designs, generic (i.e., randomly generated) robot designs operating in the same three

scenarios are unable to reach the goal regions.

100 ——ASA+MP —— NM+MP —— RRT-of-RRTs
o ——ASA+G NM+G
(]
£ 80
[0}
S
&
2 60
o
O
2 404/

(]
<

[$)

8 20
x

% 10 20 30 40 50 60

Computation Time (minutes)

Fig. 3. The performance over time of the design optimization methods for a
4-link serial manipulator. The plot shows the reachable goal percentage of the
best design found thus far with respect to computation time, averaged over
40 randomized problem instances.

by the angles of the four links, i.e., @ C (S1)*. We define a
robot’s design space as the length of each of the four links,
thus, D C R*. We evaluated each design optimization method
on 40 randomized problem instances. For each instance, we
randomly generated between 4 and 8 rectangular or right
triangular obstacles with sides of random length and a set
of 100 goal regions arranged in a regular grid and placed
randomly in the workspace. The robot’s start configuration qq
was fixed as O for all instances and the robot’s base position
was randomly placed so that the robot was collision-free.
Fig. 2 depicts three examples of the problem instances.

Fig. 3 shows the reachable goal percentage (averaged over
the 40 problem instances) achieved by each design optimiza-
tion algorithm as a function of computation time. The robot
design generated by our algorithm is capable of reaching a
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Fig. 4. Plot of the reachable goal percentage over computation time for each
design optimization method run 10 times for the problem instance in Fig. 2
(right column).

significantly higher percentage of the goal regions compared
to the designs found by the other algorithms.

Fig. 4 depicts the performance of each design optimization
algorithm for a single scenario, specifically Example Instance
3 in Fig. 2. Each line is an average over 10 runs of the
corresponding algorithm. We note the methods that use grid-
based evaluation of the objective function are not guaranteed
to improve over time since ignoring motion planning implies
they are optimizing a potentially incorrect approximation of
the objective function. Our method improves the design in an
asymptotically optimal manner.

Our results indicate that our approach for blending ASA for
searching the design space and motion planning for design
evaluation helps in attaining computational efficiency and
escapes local optima via asymptotic optimality.



Fig. 5. A concentric tube robot (composed of cyan, yellow, and magenta
tubes) has the potential to reach clinical goal regions (green and blue voxels)
within the lung for early-stage lung cancer diagnosis. The figure shows the
robot with an appropriate design reaching a point (green sphere) in one of
the goal regions (shown as blue).
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Fig. 6.  The reachable goal percentage over computation time for the

concentric tube robot scenario. The results are averaged across 40 different
problem instances, each with randomly selected goal regions in the right lung.

B. Design Optimization of a 3-tube Concentric Tube Robot

We next apply our design optimization algorithm to a con-
centric tube robot [8, 11], a medical robot composed of nested
nitinol tubes that can be rotated and translated independently
to change the shape of the entire robot and achieve tentacle-
like motion. Unlike traditional medical instruments that are
constrained to straight-line paths, these robots are capable of
curving around anatomical obstacles, e.g., blood vessels, to
reach clinical targets in a safe, minimally-invasive manner.

We consider in simulation a concentric tube robot with 3
tubes. In configuration space, each tube adds two degrees of
freedom (since each tube can be independently inserted and
rotated), resulting in a 6 dimensional configuration space, i.e.,
Q C (8%)? x R3. The curvilinear shapes that the robot can
achieve are highly dependent on the physical specifications of
the robot’s tubes, i.e., its design. In this study, each tube of

the concentric tube robot is described by (i) the length of its
straight section, (ii) the length of its pre-curved section, and
(iii) the curvature of its pre-curved section. Thus, for our 3-
tube robot the design space is 9 dimensional, i.e., D C R®.
To evaluate the robot’s shape given its configuration, we use
an accurate mechanics-based kinematic model to account for
the elastic and torsional interactions between the tubes [28].

Fig. 5 illustrates a potential medical application of these
devices for biopsy of suspicious nodules in the lung for early-
stage lung cancer diagnosis. The concentric tube robot is
deployed near the base of the primary bronchus of the right
human lung using a rigid bronchoscope with the objective
of reaching a clinical target for biopsy. We discretized the
interior volume of the right human lung into 4156 equally-
sized cubic voxels each with volume =~ 0.7 cm3. For each
trial, a subset of 8 contiguous voxels (i.e., goal regions) was
randomly chosen to represent subregions of a clinical target
that should be biopsied.

The results averaged over 40 trials are shown in Fig. 6.
The results for this scenario follow a similar trend as the
results obtained from the 4-link serial manipulator scenario. In
particular, the figure illustrates our algorithm’s effectiveness in
finding a design with high reachable goal percentage and its
tendency to efficiently improve the solution over the allotted
computation time without being trapped in local optima.

VII. CONCLUSION

We presented a design optimization algorithm applicable
to any piecewise cylindrical robot. The algorithm integrates
a sampling-based motion planner in the configuration space
with stochastic search in the design space to efficiently com-
pute designs that maximize reachability to user-specified goal
regions in the workspace. We proved the asymptotic optimality
of our algorithm and demonstrated its computational efficiency
in simulated scenarios involving serial manipulators and con-
centric tube robots for medical procedures.

In future work, we plan to consider a mixture of continuous
and discrete design parameters and generalize our definition of
goal regions to consider goal configurations and end effector
poses. We also plan to physically implement the designs
computed by our method and conduct experiments in testbeds
based on clinically-relevant scenarios, such as lung biopsies
and neurosurgery. Since the shape-set or 3D-printed robots
may not precisely match our method’s output, we plan to
consider design uncertainty in design optimization. We also
conjecture that our method and analysis can be extended
beyond piecewise cylindrical robots.
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