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Abstract—This paper presents a framework for optimizing
both the shape and the motion of a planar rigid end-effector
to satisfy a desired manipulation task. We frame this design
problem as a nonlinear optimization program, where shape and
motion are decision variables represented as splines. The task is
represented as a series of constraints, along with a fitness metric,
which force the solution to be compatible with the dynamics of
frictional hard contact while satisfying the task.

We illustrate the approach with the example problem of
moving a disk along a desired path or trajectory, and we verify
it by applying it to three classical design problems: the rolling
brachistochrone, the design of teeth of involute gears, and the
pitch curve of rolling cams. We conclude with a case study
involving the optimization and real implementation of the shape
and motion of a dynamic throwing arm.

I. INTRODUCTION

Jai alai players use a cesta to catch and throw a ball at high
speeds and with high accuracy (Figure [T). The cesta is an
evocative example of the interplay between shape and motion.
Their coordination allows players to transfer a large amount
of energy to a ball while controlling its trajectory.

One might see jai alai as an interesting but contrived
example of dynamic manipulation. An example where both
shape and motion play key roles in determining the interaction
between end-effector and object. On the contrary, in many
solutions for robotic manipulation and locomotion, contact
is designed and planned for pointy feet and finger tips. In
these solutions, shape is usually of little relevance, and motion
planning alone is tasked with controlling interaction. One
might choose to see these solutions as equally contrived.

This paper starts from the assumption that shape and motion
are design freedoms, and studies the problem of simultane-
ously optimizing them for planar manipulation tasks. The main
contribution is a general framework to design shapes and to
plan motions that work together to accomplish kinematic or
dynamic tasks such as reaching a goal state, follow a path or
a trajectory, or optimize a fitness function. A significant part
of the contribution is in the representations for motion, shape,
and tasks, that enable the optimization. The long term goal of
our work is a better understanding, and the development of
tools to effectively use shape and actuation in manipulation.

The proposed approach to design shape and motion, and the
structure of this paper, is as follows:

The problem has the form of a nonlinear program
where shape and motion are decision variables. The
dynamics-kinematics of planar contact are represented

Fig. 1. Jai alai player throwing a ball. The cesta allows players to transfer
a large amount of energy to the ball while controlling its rolling trajectory.

as constraints, similar to previous works on trajectory
optimization through contact [[13} [15].

- The representation of shape, motion, interaction, and
task, is in terms of splines and dynamic-kinematic con-
straints at collocation points. Section describes the
system, Section the interaction and task constraints,
and Section [V] their spline parametrization.

- We illustrate the approach in Section with the toy
example task of moving a disk along a desired path or
trajectory. We show the differences between optimizing
either the manipulator’s shape, or its trajectory, or both.
A key observation is that often both shape and motion
can be used to satisfy the same task, and that there is an
inherent nullspace in their combined design space.

+ We verify the approach in Section by formulating
classical problems with known solutions: gear tooth pro-
files, rolling cams of variable transmission, and the rolling
brachistochrone. The optimization approach yields cor-
rect solutions, and offers flexibility in studying variations.

- We implement the problem of planar dynamic throwing
in Section In the optimized solutions, the shape and
throwing trajectory cooperate with gravity to maximize
reach and respect the frictional limits of the interaction
between a throwing palm and a ball.

We finish with a discussion of the main challenges involved
in simultaneously optimizing shape and motion and promising
directions for future work.



II. RELATED WORK

Shape optimization for contact The field of shape optimiza-
tion for contact interactions is a broad subset of mechanism
design for automation. Examples include the design of part
feeders, traps, fences, finger shapes, gear teeth, and cams.
Caine [3] develops a framework and set of computational
tools for designing the shapes of features in a vibratory bowl
feeder. Similarly, Brokowski et al. [2] optimize the shape of a
curved fence used to reorient parts traveling along a conveyer
belt. Rodriguez and Mason [20, 21, [19] build a framework
for computing end effector shapes for 1 DOF actuators and
desired contact interactions based on sets of contact normals.
Gear design is a relatively large field with extensive recent
work [5} L1} 10} 24} 25] on methods to design shapes and
pitch curves of circular and non-circular gears.

Trajectory optimization through contact The nonprehensile
manipulation and locomotion communities have been espe-
cially interested in motion optimization involving frictional
contact. Lynch and Mason. [12] introduced a control system
for a one joint nonprehensile manipulator, enabling it to
preform various dynamic tasks such as throwing and catching
with a flat palm/arm. Ryu et al. [22] and Lippiello et al.
[9]] both create control frameworks for stabilizing and driving
planar rolling systems. Becker and Bretl [1]] design a set of
control inputs for a sphere rolling on a table such that the
cumulative rotation of the sphere is invariant with respect
to its size- a unique example of motion planning that takes
shape uncertainty into account. Posa et al. [[15] propose one
of the very few frameworks for trajectory optimization for
systems that undergo intermittent frictional interaction based
on a complementarity formulation for contact resolution.

Simultaneous shape and motion optimization Despite the
abundance of work on either shape or motion optimization for
contact interactions, there is relatively little work that approach
both simultaneously. Reist and D’Andrea. [16, [17] optimize
the motion and concavity of a paddle juggler capable of stably
bouncing a ball without feedback. The approach is limited
to the particular application, and the contact manipulation is
limited to periodic instantaneous impacts. Chen [4] optimizes
both the shape and control input for an underactuated throwing
arm. Lynch [13]] explores the design space (shape and motion)
of a contact juggler for the task of butterfly juggling in a planar
rolling system. This system is the closest work to this paper,
and serves as primary inspiration for the proposed approach.

III. A PLANAR MANIPULATION SYSTEM

This paper focuses on a type of planar contact manipulation
system consisting of two rigid bodies: a hand H and an object
B, which share a single contact point, as illustrated in Figure[2}
This section describes the notation and coordinates that we
will use to describe their shapes, motions, and interactions.
Throughout the paper we will use subscripts h and b referring
to hand and object respectively.

In the paper we will make use of the following notation:

Fig. 2. Planar manipulation system consisting of a hand H manipulating an
object B. We make use of an inertial reference frame W, and moving frames
attached to the hand and ball. Their configurations are given by their position
vectors and orientations (7, 0,) and (P, 0p). Hand and object interact at
contact point located at ¢, or ¢, and with normals 7, and 7, all defined in
the hand and object reference frames.

* (Pn,0n) = (Ph,>pn,,0n) and (P, 0h) = (pb,, Db, 00)
describe the planar poses of hand and object.

+ n(s),(s) : [0,1] — R? parametrize the shape profiles
of hand and object in their respective frames.

+ sp and s; are the values of the parameter s at contact,
thus ¢,(sn,) and ¢(sp) are the contact point in the hand
and object reference frames.

- ¥(s) = L (s) is the tangent vector to a shape at point
c(s) in the hand and object reference frames.

- a(s) = R(%) - ‘58‘ is the normalized outward facing
surface normal to a shape at point ¢(s) in the hand and
object reference frames.

Note that we will make frequent use of the rotation matrix
about axis Z by 6 radians, noted by R(6).

The motion of the type of planar system we consider in this
paper is then parametrized by the time-dependent functions:

Ph(t), On(t), Db (t), O(t)
its shape is parametrized by the functions:
Ch(s), G(s)
and its interaction by the evolution of the contact point:

5h(8h), E'b(sb)

which evolve in time with the parameters sy, (t), sp(t).

Note that the variables describing the system can be split
into two categories: design variables pj,, 0}, ¢, C, which
describe parts of the system that can be directly controlled,
i.e., the shape and motion of the hand and the shape of the
ball; and descriptor variables py,0;, sy, s, which describe
underactuated degrees of freedom determined by the evolution
of the design variables, i.e, the motion of the ball and the
evolution of the contact point.

The system is also affected by the following constants,
which we assume to be known: the mass of the object m, its
moment of inertia I, gravity ¢, and the coefficient of friction
between hand and object p.



Fig. 3. Example of a simple planar manipulation task. Under gravity, the
hand (white) moves an object (grey ball) along a trajectory. Note that the
orientation of the object is linked to its displacement along the path.

IV. A PLANAR MANIPULATION TASK

We study two types of planar manipulation tasks framed as
constrained satisfaction/optimization problems:

1. Produce a desired motion of the object, in the form of
either a goal state, a path, or a trajectory to follow, e.g.
move along a curve, as shown in Figure

2. Optimize a behavior of the object defined by a fitness
function, e.g., throw fast.

To simplify interactions, and for the sake of optimization
complexity, we restrict the search for solutions to where hand
and object interact with sticking or rolling contact, but do not
slip with respect to each other.

The task then takes the form of a nonlinear optimization
program with shape and trajectory as decision variables,
subject to dynamic, kinematic, and task constraints. A big
part of the work, which we describe in the two following
subsections, is in finding a tractable way to formulate these
constraints.

A. Kinematic and Dynamic Constraints

Before tailoring the system to any particular task, we need to
make sure that the interactions it produces adhere to the laws
of physics. To do so, we impose a series of kinematic and
dynamic constraints that guarantee that contact is maintained
with no penetration, that frictional forces are such that objects
do not slide with respect to each other, and that the acceleration
of the system is along the resultant of forces.

The expression of the kinematics of contact in the form
of constraints was already described by Montana [14]. The
algebraic representation we use in this paper is similar to
the one proposed by Lynch et al. [13]] to describe contact
juggling. For their expression, we will make use of the notation
introduced in Section to describe the shape and motion
of the system. For simplicity of notation, we suppress the
dependencies of ¢}, ¢, and their derivatives on s, and s
respectively.

Contact Constraint The contact points in the hand and object
must be the coincident in the world reference frame:

Pr+ R(0n) - & = Db + R(0y) - G (D

Tangency Constraint At the point of contact, the vectors
tangent to the hand and object must be opposing each other
(note that / measures the orientation angle of a vector):

O + L0y, = 0p + LU, — 7 (mod 27T) 2)

Rolling Constraint The speed of the contact point in the hand
and object must be opposite:

|Un|3n = —|b|$6 3)

Inertia Constraint The angular acceleration of the object
must be consistent with the sum of torques (3.7 X f = Ia):

(R(@b) . Eb) X m (ﬁb — 57) = I@b (4)

Friction Cone Constraint The contact force exerted by the
hand on the object must be inside the friction cone. If f_;; =
R(—6,)m(p, — §) is the contact force applied from the hand
to the object, in the hand reference frame, then:

1’_}’} e N e
+ =" fn < pin - fr S)
||

We refer to the first three constraints as kinematic constraints
which we impose to all problems in this paper, and the last
two as dynamic constraints which we impose only when
appropriate.

These constraints are only a local approximation to the
physics of interaction. They do not explicitly prevent, for
example, the hand and object from intersecting at some
point other than the studied contact point due to their global
shapes, or due to their local curvatures. The global problem,
while important and interesting, is significantly more difficult
to formalize. The local constraints have proven useful and
sufficient for the problems analyzed in the paper.

B. Manipulation Task Constraints

The previous constraints narrow the set of possible manip-
ulation systems to those that are physically sound. Now we
explore additional constraints and the use of fitness functions
to represent manipulation tasks.

Decision variable constraints It is common to reduce the
dimension of the problem by directly restricting the range of
acceptable values of decision variables «.

a=k (6)
ki <a<k @)

Common examples are to constrain the hand to rotate about a
pivot pj, = (0,0), or to fix the shape of the object, for example
to be a circumference of radius r, &(s) = (r cos(s), rsin(s)).

Initial and endpoint constraints We often want to constrain
the hand or object to start from or reach a configuration:

—

ﬁh(t0|tf) = and/or gh(toﬁf) = kl (8)

1
ﬁb(t0|tf) = ]ﬂg and/or gb(t0|tf) = kQ (9)



to start from rest:

Dy(to) = 0 and y(to) = $u(to) =0 (10)

Pr(to) =0 and 0y, (to) = 45 (to) =0 (11)
or to (additionally) start from a static equilibrium:

}%};(to) = 6 and éb(to) = §b(t0) = 0 (12)

ﬁh(to) = 6 and eh(to) = §h(t0) =0 (13)

Implicit motion constraints In some cases, constraints only
implicitly affect the decision variables. The most frequent use
is to constrain the object or hand to move along a path, rather
than a trajectory. These are formulated as general implicit non-
linear constraints:

F(py,pn) =0 (14)

Regularization constraints Occasionally, we incorporate ex-
tra constraints to guide the solver to find or avoid a particular
type of solution. The two most frequently used regularization
constraints are fixing the  component of the hand shape to a
given function:

ch, (s) = k(s)

and constraining each point of the hand shape to a line that
varies with s:

ki(s)cn, (8) + ka(s)cn, (s) = ka(s) (16)

We often use (15) to enforce ¢4, = f(cp,) ie. the hand
shape passes the vertical line test. Similarly, is used to
enforce |Cy| = f(£c). Both are effective at preventing self-
intersecting hand shapes, which are undesirable.

(15)

Fitness metric Often, we want to optimize a behavior with
respect to a performance metric, rather than satisfy a particular
constraint. These become part of the cost function of the
optimization problem. Two performance metrics we will study
in this paper are throwing distance and travel time.

V. DISCRETIZATION

The shape and motion of the system are functions of space
and time. The formulation in Section [[V]is continuous, but for
optimization purposes, we use a discrete representation. We
want a representation that supports smoothness C? and that
is sparse, i.e., each decision variable has a limited domain of
influence both in space and time.

To do so, we describe shape and motion as linear combina-
tions of shifted basis functions, as illustrated in Figure E} Let
®(x) be any given decision variable, dependent on x, which
could be either time ¢ or space s. Then we construct:

N
O(x) =Y B (L(x) — i) (17)
i=1
where:
E is a cubic B-spline basis function with uniformly
spaced knot points, which is twice differentiable (smooth-
ness) and only non-zero in the interval (—2,2) (sparsity).

Collocation points

t te

01 &

ts

O0----=-=-=-=-=-=----+

Control points

Fig. 4. Spline construction of the continuous decision variable ®(x) with
the discretized parameters ovp ...apn, with N = 5, and with M +1 = 8
collocation points where we will impose all constraints. Note that the domain
of each basis is (—2,2) which gives sparsity to the spline representation.

+ a1...an are coefficients that weight the basis functions.
Note that these become the discrete decision variables
that discretize the continuous decision variable ®.

+ L(-) is a factor that non-dimensionalizes x as appropri-
ate. For shape variables, s is already dimensionless, so
L(s) = s. For motion variables, we transform time as
L(t) = ’yf, where 7 is a global time constant that deter-
mines the duration of motion (% is a decision variable in
the optimization program, allowing trajectories of varying
length), and v is a normalizing constant that ensures
each component of the trajectory has the same nominal
duration regardless of the number of basis functions used
in its representation (which allows varying resolution).

The use of basis functions allows us to compute in closed
form the derivatives of the decision variables, which are
necessary for many of the constraints described in Section

N
d(z) = ZaE (L(z) — i) L(x) (18)
O(x) = o E (L(x) — i) L(x)? (19)
i=1

where we used that L(x) = 0.

Ideally, the constraints of motion would hold true at all
times. However, for resolution purposes, we impose the motion
constraints at M 4+ 1 evenly distributed points along the
trajectory, playing the role of collocation points in trajectory
optimization [8]]. In particular, each of the continuous motion

constraints in a problem G(t,a,...,ay,+) is imposed as
M + 1 constraints in the optimization program G;(t; =
L1, ., an, L) for j =0..M.

We extend this discretization to a periodic domain to
represent closed shapes and periodic motions. The number
of collocation points and basis functions we use varies with
the problem and number of constraints. Our specific use of
collocation drops any guarantees of integration exactness in
favor of ease of implementation. However, we plan to explore
more exact collocation methods in the future.
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Fig. 5. Toy problem of moving a ball under gravity along a given path, drawn with a dotted line. There are infinite solutions in the shape-motion nullspace.
Here we show two interesting cases: (a) Solution when the hand is forced to moved along a fixed trajectory, e.g., constant angular velocity, and only the hand
shape is a design freedom. (b) Solution when the hand shape is fixed, e.g., a straight line, and only the hand trajectory is a design freedom. Note that the ball
follows exactly the same path in both cases, although at different velocities. (c) Solution when both hand shape and trajectories are design freedoms. Note
that in this case we can impose the trajectory of the ball, not just its path, illustrated by the fact that the ball moves at a constant speed along the curved path.

VI. ILLUSTRATIVE TOY PROBLEM

In this section we describe the method to optimize shape
and motion with the simple problem of moving a ball under
gravity along a desired path pp, with a rotational paddle.

We start by exploring these two problems: (Prob. 1) For a
given fixed hand motion, is there a hand shape that forces the
ball to travel along the desired path? and (Prob. 2) For a given
fixed hand shape, is there a hand motion that forces the ball
to travel along the desired path?

We can formulate both problems as a shape-motion pair that
satisfies the following constraints:

- Kinematic: contact, tangency and rolling.
+ Dynamic: inertia and friction.
- Fixed decision variables:

- The object is a ball &(s) = (I cos(s),lsin(s)).

- The hand pivots about the origin: pj(¢) = 0.

- (Prob. 1) Fixed hand motion 0,(t) = k
example to constant velocity.

- (Prob. 2) Fixed hand shape ¢} (s), for example, to a

straight line.

- t, for

+ Task: The ball moves along a desired path given as a level
set G(py(t)) = 0. In this example we use a parabola.

Figure [Sh and Figure Bp show the outcome of the opti-
mization. Both solutions satisfy all constraints and succeed
in transporting the ball along the desired path, while rolling
under the effect of gravity on the moving hand. This is an
illustrative example of the nullspace that exists in the shape-
motion design space. It is ultimately the combination of both
that produces the desired object manipulation, but in many
cases we can reproduce the effect of a motion in a shape, as
well as the effect of a shape in a motion.

Note in the previous examples that the ball traverses the
path at different speeds. Freeing both shape and motion in the
optimization problem, and exploiting their nullspace, give us
enough design freedom to control the trajectory pj(¢) along
which the ball will move, not just its path. The problem has
a very similar formulation to the previous one, but we instead
replace the task constraint with a stricter constraint on the ball
motion 7, (t) = 7y (t), and remove the constraints on the shape
or motion of the hand. The solution, illustrated in Figure Ek:,
succeeds in moving the ball along the desired path, but now,
for example, with constant speed.

VII. CLASSICAL PROBLEMS

In this section, we formulate three classical problems with
known solutions to validate the proposed optimization ap-
proach.

A. Rolling Brachistochrone

A brachistochrone curve is the path that allows an object
to travel from A to B in the shortest amount of time, when
starting from rest at A and accelerated by gravity g. A classical
result in mechanics is that when the object is a frictionless
bead, the brachistochrone is a section of a cycloid [23].
Rodgers [18] showed that in the case of a rolling disk the
brachistochrone is also a cycloid.

We represent the problem of the rolling brachistochrone
with the proposed framework, where the path is a non-moving
hand and the object is a disk, whose rolling trajectory down
the hand pj(t) becomes the brachistochrone when it achieves
minimum travel time. We impose the following constraints:

- Kinematic: contact, tangency and rolling.

- Dynamic: inertia. Since the disk rolls without slipping

(infinite friction), we omit the friction cone constraint.



Fig. 6. Brachistochrone for a rolling cylinder. The analytical solution of the
trajectory of the center of the cylinder converges (dotted line) to a cycloid
(continuous line), when reducing the time to traverse from A to B.

- Fixed decision variables:
- The object is a disk & (s) = (I cos(s), Isin(s)).
- The hand is static p(t) = 0 and 65 (t) = 0.
+ Initial and endpoint constraints:
- The disk starts at rest:
[L)'b(t()) = 6, éb(to) = $p(to) =
- The disk starts at pj(tg) = A.
- The disk ends at py(t;) = B.
+ Task: The duration of the trajectory is 7 =T

0.

We can formulate the problem by adding a cost on T to
the objective function. From our experience, this is subject to
local minima and very sensitive when approaching the real
minimum time. In practice, we make the convergence more
robust by stepping on 7" outside of the optimizer. The process
starts with 7" equal to the time it takes for the roller to traverse
a straight line from A to B, and gradually ask the program to
find paths with smaller and smaller values of 7" until a solution
cannot be found. Figure [6] shows the sequence of solutions
converging to a cycloid.

B. Involute Gears

Gear design is a classic shape design problem. A pair of
gears should mesh while maintaining a time-invariant gear
ratio. The fundamental law of gearing [7] states that these
two properties are equivalent to constraining the line of action
to pass through the pirch point at all times. Figure [7) illustrates
these concepts.

Involute gears, i.e., gears with teeth shaped as involute
curves, are a popular solution that satisfy the above properties.
One unique (and useful) property of the meshing between
involute gears is that the line of action is constant throughout
contact. As a consequence, the pressure angle «, which de-
termines the amount of power that can be transmitted through
the gear train, is constant throughout the meshing.

We now formulate the problem of finding gear shapes that
satisfy the above properties with the proposed optimization ap-
proach. More concretely: for a given center distance between
gears [, gear ratio r, and pressure angle «, find gear teeth
that mesh adequately. We will indeed recover involute gears.
In this case both hand and object are a pair of meshing gear
teeth, and we impose the following constraints:

Center line
Pitch circle

Tooth profile

Line of action

Pressure angle

Fig. 7. Anatomy of a gear. The interaction between gears is largely
determined by their tooth profile. The center line is the line connecting the
two rotation centers, the line of action is orthogonal to the contact tangent
between the two gears, hence is the direction along which force is transferred
from one gear to another. The pressure angle, complementary to the angle
between the line of action and the center line, is key in the design of gears.

----- Center line
— Line of action

Tooth shape (computed)
----- Involute (theory)

2k

1 b @ Pitch point
@® Gear center
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Fig. 8. Gear tooth profiles obtained for five different pressure angles c.. The

figure shows the corresponding line of action for each desired pressure angle
(orthogonal to the gear tooth profile at the pinch point) and the recovered gear
tooth profiles. These correspond very accurately to involute curves, known to
provide constant pressure angle.

- Kinematic: contact, tangency and rolling.
- Fixed decision variables:

- The driving gear rotates about the origin () = 0.
- The driven gear rotates about the point 7, (t) = (I, 0).

- Task:

- Constant gear ratio 7. We achieve this by fixing the
trajectory of the gears 0, (t) = wt, O,(t) = —rwt.

- Constant pressure angle «. That is:
On + £0,(sp) = a+ 7 (mod 27)

Note that in this case we do not impose dynamic constraints,
since the meshing between gears can be seen as a purely
kinematic/geometric problem. Another distinction from other
problems, is that in this case we are looking for both the shape
of hand and object (both gears). It should also be noted that we



(a)

Fig. 9.

make use of the property that meshing gears are approximately
in rolling contact near the pitch point.

Figure [§] shows the obtained shapes corresponding to
the section of a single geartooth for pressure angles o =
(.5,.6,.7,.8,.9) - T and gear ratio r = 1.5. These curves
can then be assembled into entire gear profiles. The resulting
profiles match exactly with the expected analytical result
corresponding to involute gears, also depicted in Figure [§]

C. Pitch Curve of non-Circular Gears

Every planar gear is characterized by a pitch curve, an
imaginary smooth curve that defines its perimeter. The pitch
curves of two meshing gears are in rolling contact as the gears
rotate. For a circular gear, the pitch curve is a circle.

A classic problem in noncircular gear design is that of
finding a pair of pitch curves R;(f;), R2(f2) for meshing
gears with a given transfer function h(6;) = 2—2, and center
distance [. The typical approach [24] is to limit the problem
to pitch lines that contact along the center line, in which case:

R1(61)
Ry(62(01))

due to contact and rolling constraints. The solution to these
equations is then:

Ri(6h) + Ra(02(61)) =1, h(01) =

Lh(61) L
Trney 200 = 9GS
Alternatively, we formulate the problem with the proposed
framework, and, if desired, remove the above limitation. In
this case, the hand and object shapes are the pitch curves. If
we want to design a pair of pitch curves with transfer function
h(-), the solution should satisfy:
- Kinematic: contact, tangency and rolling.
- Fixed decision variables:

R1(61) =

- The driving gear rotates about the origin pj,(t) = 0.

- The driven gear rotates about the point p,(t) = (I, 0).

- The orientations of both gears are 0, (t) = wt and
0y(t) = —H(wt), where H'(0) = h(0).

+ Periodic boundary constraints: We impose that the
contact point resets after a full rotation of the gear
sn(0) = sp(tr)mod N, and s4(0) = s(t7)mod Ny,

Figure |§| shows an example with transfer function h(6) =

1+ #07003(0) (the same as an example in [10]). The resulting
pitch curves align closely with the analytical result.

(a) Pair of pitch curves with a desired transmission profile (b), and transmission ratio h(61) = 3—2 (©).
1

VIII. DYNAMIC THROWING

Inspired by the jai alai cesta in Figure [I] we set to design
and implement a planar 1DOF thrower. Optimal throwing, in
the context of a rotating paddle, requires an agreement between
shape and trajectory. To do so, we look for a combination of
shape and throw trajectory that maximizes the distance trav-
elled by the ball before hitting the ground. To avoid degenerate
solutions, we impose the following ad-hoc constraints: 1) The
angular acceleration of the hand is bounded by &, 2) the ball
starts at rest at a given location A, 3) the ball is released
within radius ! of the origin, and 4) we constrain to rolling
interactions.

We define a problem that optimizes the distance the ball
travels before hitting the ground with the following constraints:

- Kinematic: contact, tangency and rolling.
+ Dynamic: inertia and friction.
+ Fixed decision variables:

- The object is a ball &,(s) = (I cos(s),sin(
- The hand pivots about the origin: pj,(t) =
- Bounded angular acceleration: |6} (t)| < a.

w

))

=

+ Initial and endpoint constraints:

- The system starts at static equilibrium as in (T0)-(T3).
- The ball starts at pj,(tp) = A.
- The ball leaves the hand within a radius |p,(tf)| = L.

Overhand throw: The result, as seen in Figure @ is a hand
shape that is concave up near the center, and concave down
near the tip.

Underhand throw: The resulting shape, seen in Figure [T} is
concave down near the center, and concave up near the tip.

Experiments The experimental setup consists of a motor
attached to a rigid base. The computed hand shapes for
underhand and overhand throwing are fused into a two-
ended lasercut hand profile. The motor controller (Galil DMC
4020) has position/velocity tracking functionality, allowing the
system to execute the computed trajectories. The resulting
motion was captured with a high speed camera. We also use a
Vicon motion tracking system to measure py(t). It should be
noted that there is no feedback and the initial positions were
set manually. The optimization and experimental results are
similar as seen in Figure [T0] and Figure [T1}



Fig. 10. The optimal overhand throw obtained is composed of two phases: a first gentle inclination where gravity accelerates the ball, followed by a fast
upward stroke. The stream of pictures shows a real throw and the right most figure shows the ball trajectory spread over 30 throws.

Fig. 11.

The optimal underhand throw we obtain is composed of two phases: a first gentle inclination where gravity accelerates the ball, followed by a fast

upward stroke. The stream of pictures shows a real throw and the right most figure shows the ball trajectory spread over 30 throws.

IX. DISCUSSION

Solver Our implementation uses SNOPT [6] for solving the
presented nonlinear programs.

Multiple contact modes This work assumes rolling/sticking
contact, and does not currently permit other contact modes
(sliding, impact etc.). This is a imitation we plan to address
in the future by exploring complementarity formulations.

Fitness objective vs. constraint satisfaction Posing some
design objectives (i.e. travel time) as an optimization cost often
results in local minima. We fix this by instead imposing the
design objective as a constraint that iteratively increases or
decreases. In the present implementation, this requires human
supervision to determine the sequence of constraint values.

Problem precision and solution sensitivity We use intuition
and trial and error to determine the number of control points
and collocation points, which is not satisfying. Some regions
of the solution require higher resolutions than others, and high
resolution discretizations require more accurate initial guesses
for solution convergence. The solution is also sensitive to the

number of collocation and control points, the relative scaling
of costs vs. constraints, and the initial guess. A potential
solution is to use multiscale optimization techniques that
automatically increase resolution where necessary.

Shape regularization We need shape regularization for two
reasons. First, the shape function has many extra degrees of
freedom. For instance, ¢, (s) and &, (f(s)) describe the same
contour for all monotonically increasing functions f. This
could be resolved if s corresponded to arc-length, however this
is difficult to implement in practice. Without regularization, the
control points representing shape tend to spread out unevenly,
resulting in poor solutions. Second, any sufficiently general
representation of shape is capable of self-intersections. Our
formulation, which relies on local constraints, cannot prevent
self-intersections, which are a global feature.

Though the regularization constraints shown in (I3)) and (16)
are effective at addressing these issues, they require human
supervision. We plan to explore alternative shape representa-
tions that reduce dimensionality, and to develop heuristics for
finding more natural regularization constraints of a given task.



(1]

(2]

(3]

(4]

(5]

(6]

(71
(8]

(9]

[10]

[11]

[12]

[13]

[14]

[15]

REFERENCES

Aaron Becker and Timothy Bretl. Approximate steering
of a plate-ball system under bounded model perturbation
using ensemble control. In IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS),
pages 5353-5359, 2012.

M. Brokowski, M. Peshkin, and Kenneth Goldberg.
Optimal curved fences for part alignment on a belt.
Transactions-America Society of Mechanical Engineers
Journal of Mechanical Design, 117:27-35, 1995.
Michael Caine. The design of shape interactions using
motion constraints.| In IEEE International Conference on
Robotics and Automation (ICRA), pages 366371, 1994.
Po-Ting Chen. Simulation and optimization of a two-
wheeled, ball-flinging robot.| Masters thesis, University
of California, San Diego, 2010.

Ana Cristescu, Bogdan Cristescu, and Andrei Laurenia.
Generalization of Multispeed Gear Pitch Curves Design.

Applied Mechanics and Materials., 659:559-564, 2014.

Philip E. Gill, Walter Murray, and Michael A. Saunders.
SNOPT: An SQP algorithm for large-scale constrained
optimization. SIAM review, 47(1):99-131, 2005.

V. G. A. Goss. Application of analytical geometry to the
form of gear teeth. Resonance, 18(9):817-831, 2013.
Charles R. Hargraves and Stephen W. Paris. Direct
trajectory optimization using nonlinear programming and
collocation. Journal of Guidance, Control, and Dynam-
ics, 10(4):338-342, 1987.

Vincenzo Lippiello, Fabio Ruggiero, and Bruno Sicil-
iano. The effect of shapes in input-state linearization
for stabilization of nonprehensile planar rolling dynamic
manipulation.| IEEE Robotics and Automation Letters, 1
(1):492-499, 2016.

Faydor L. Litvin, Alfonso Fuentes-Aznar, Ignacio
Gonzalez-Perez, and Kenichi Hayasaka. Noncircular
Gears: Design and Generation. Cambridge University
Press, New York, New York, 2009.

Jen-Yu Liu and Yen-Chuan Chen. |A design for the
pitch curve of noncircular gears with function generation.
In Proceedings of the International MultiConference of
Engineers and Computer Scientists, volume 2, 2008.
Kevin M. Lynch and Matthew T. Mason. Dynamic non-
prehensile manipulation: Controllability, planning, and
experiments. The International Journal of Robotics
Research, 18(1):64-92, 1999.

Kevin M. Lynch, Naoji Shiroma, Hirohiko Arai, and
Kazuo Tanie. The roles of shape and motion in dynamic
manipulation: The butterfly example. In IEEE Interna-
tional Conference on Robotics and Automation (ICRA),
pages 1958-1963, 1998.

David J. Montana. The kinematics of contact and grasp.
The International Journal of Robotics Research, 7(3):17—
32, 1988.

Michael Posa, Cecilia Cantu, and Russ Tedrake. A
direct method for trajectory optimization of rigid bodies

[16]

(17]

(18]

[19]

(20]

(21]

[22]

(23]

[24]

[25]

through contact., The International Journal of Robotics
Research, 33(1):69-81, 2014.

Philipp Reist and Raffaello D’ Andrea. Bouncing an un-
constrained ball in three dimensions with a blind juggling
robot.| In IEEE International Conference on Robotics and
Automation (ICRA), pages 1774-1781, 2009.

Philipp Reist and Raffaello D’Andrea. Design of the
pendulum juggler. In IEEE International Conference
on Robotics and Automation (ICRA), pages 5154-5159,
2011.

Eric Rodgers. Brachistochrone and tautochrone curves
for rolling bodies. American Journal of Physics, 14(4):
249-252, 1946.

Alberto Rodriguez. Shape for Contact. Phd thesis, CMU-
RI-TR-13-21, Carnegie Mellon University, 2013.
Alberto Rodriguez and Matthew T. Mason. Grasp Invari-
ance. The International Journal of Robotics Research, 31
(2):237-249, 2012.

Alberto Rodriguez and Matthew T. Mason. |[Effector
Form Design for 1DOF Planar Actuation. In IEEE
International Conference on Robotics and Automation
(ICRA), pages 349-356, 2013.

Ji-Chul Ryu, Fabio Ruggiero, and Kevin M. Lynch.
Control of nonprehensile rolling manipulation: Balancing
a disk on a disk. In IEEE International Conference
on Robotics and Automation (ICRA), pages 3232-3237,
2012.

Hector J. Sussmann and Jan C. Willems. 300 years
of optimal control: from the brachystochrone to the
maximum principle. IEEE Control Systems Magazine,
17(3):32-44, 1997.

Daniel CH Yang and Shih-Hsi Tong. |Generation of
1dentical noncircular pitch curves.| Journal of mechanical
design, 120:337-341, 1998.

I. Zarbski and T. Saaciski. [Designing of non-circular
gears.| Archive of Mechanical Engineering, 55(3):275-
292, 2008.


http://ieeexplore.ieee.org/abstract/document/6385722/
http://ieeexplore.ieee.org/abstract/document/6385722/
http://ieeexplore.ieee.org/abstract/document/6385722/
http://mechanicaldesign.asmedigitalcollection.asme.org/article.aspx?articleid=1444395
http://ieeexplore.ieee.org/document/351268/
http://ieeexplore.ieee.org/document/351268/
http://escholarship.org/uc/item/5rr9d2sb
http://escholarship.org/uc/item/5rr9d2sb
http://www.scientific.net/AMM.659.559
http://epubs.siam.org/doi/abs/10.1137/S0036144504446096
http://epubs.siam.org/doi/abs/10.1137/S0036144504446096
http://link.springer.com/article/10.1007/s12045-013-0106-3
http://link.springer.com/article/10.1007/s12045-013-0106-3
http://arc.aiaa.org/doi/abs/10.2514/3.20223
http://arc.aiaa.org/doi/abs/10.2514/3.20223
http://arc.aiaa.org/doi/abs/10.2514/3.20223
http://ieeexplore.ieee.org/document/7384706/
http://ieeexplore.ieee.org/document/7384706/
http://ieeexplore.ieee.org/document/7384706/
http://www.iaeng.org/publication/IMECS2008/IMECS2008_pp1681-1686.pdf
http://www.iaeng.org/publication/IMECS2008/IMECS2008_pp1681-1686.pdf
http://journals.sagepub.com/doi/abs/10.1177/027836499901800105
http://journals.sagepub.com/doi/abs/10.1177/027836499901800105
http://journals.sagepub.com/doi/abs/10.1177/027836499901800105
http://ieeexplore.ieee.org/document/680600/
http://ieeexplore.ieee.org/document/680600/
http://journals.sagepub.com/doi/abs/10.1177/027836498800700302
http://journals.sagepub.com/doi/abs/10.1177/0278364913506757
http://journals.sagepub.com/doi/abs/10.1177/0278364913506757
http://journals.sagepub.com/doi/abs/10.1177/0278364913506757
http://ieeexplore.ieee.org/document/5152616/
http://ieeexplore.ieee.org/document/5152616/
http://ieeexplore.ieee.org/document/5152616/
http://ieeexplore.ieee.org/document/5979789/
http://ieeexplore.ieee.org/document/5979789/
http://aapt.scitation.org/doi/abs/10.1119/1.1990827
http://aapt.scitation.org/doi/abs/10.1119/1.1990827
http://www.cs.cmu.edu/~albertor/pdfs/ar-PhD-thesis.pdf
http://dx.doi.org/10.1177/0278364911430416
http://dx.doi.org/10.1177/0278364911430416
http://dx.doi.org/10.1109/ICRA.2013.6630599
http://dx.doi.org/10.1109/ICRA.2013.6630599
http://ieeexplore.ieee.org/abstract/document/6225044/
http://ieeexplore.ieee.org/abstract/document/6225044/
http://ieeexplore.ieee.org/document/588098/
http://ieeexplore.ieee.org/document/588098/
http://ieeexplore.ieee.org/document/588098/
http://mechanicaldesign.asmedigitalcollection.asme.org/article.aspx?articleid=1445340
http://mechanicaldesign.asmedigitalcollection.asme.org/article.aspx?articleid=1445340
http://prozamet.pl/art_2008_3_08.pdf
http://prozamet.pl/art_2008_3_08.pdf

	Introduction
	Related Work
	A Planar Manipulation System
	A Planar Manipulation Task
	Kinematic and Dynamic Constraints
	Manipulation Task Constraints

	Discretization
	Illustrative Toy Problem
	Classical Problems
	Rolling Brachistochrone
	Involute Gears
	Pitch Curve of non-Circular Gears

	Dynamic Throwing
	Discussion

