
Robotics: Science and Systems 2021
Held Virtually, July 12–16, 2021

1

Toward Certifiable Motion Planning for
Medical Steerable Needles

Mengyu Fu∗, Oren Salzman†, and Ron Alterovitz∗
∗Department of Computer Science, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA

Email: {mfu,ron}@cs.unc.edu
†Computer Science Department, Technion - Israel Institute of Technology, Israel

Email: osalzman@cs.technion.ac.il

Abstract—Medical steerable needles can move along 3D curvi-
linear trajectories to avoid anatomical obstacles and reach
clinically significant targets inside the human body. Automating
steerable needle procedures can enable physicians and patients
to harness the full potential of steerable needles by maximally
leveraging their steerability to safely and accurately reach targets
for medical procedures such as biopsies and localized therapy
delivery for cancer. For the automation of medical procedures
to be clinically accepted, it is critical from a patient care,
safety, and regulatory perspective to certify the correctness
and effectiveness of the motion planning algorithms involved in
procedure automation. In this paper, we take an important step
toward creating a certifiable motion planner for steerable needles.
We introduce the first motion planner for steerable needles that
offers a guarantee, under clinically appropriate assumptions,
that it will, in finite time, compute an exact, obstacle-avoiding
motion plan to a specified target, or notify the user that no such
plan exists. We present an efficient, resolution-complete motion
planner for steerable needles based on a novel adaptation of
multi-resolution planning. Compared to state-of-the-art steerable
needle motion planners (none of which provide any completeness
guarantees), we demonstrate that our new resolution-complete
motion planner computes plans faster and with a higher success
rate.

I. INTRODUCTION

Steerable needles are highly flexible medical devices able
to follow 3D curvilinear trajectories inside the human body,
reaching clinically significant targets while safely avoiding
critical anatomical structures [3, 12, 39, 52]. Compared with
traditional rigid medical instruments, steerable needles can re-
duce a patient’s trauma, increase safety, and provide minimally
invasive access to previously inaccessible targets. Steerable
needles have been considered for a wide range of diagnostic
and treatment procedures including biopsy, drug therapy deliv-
ery, and radioactive seed implantation for cancer treatment [2].

Automating steerable needle procedures can enable physi-
cians and patients to harness the full potential of steerable
needles by maximally leveraging their steerability and ability
to accurately and precisely reach targets. Automation is critical
to harnessing the full potential of these needles since the
nonholonomic constraints on the needle’s 3D motion coupled
with the cluttered nature of anatomical environments make
direct manual control unintuitive and impractical for human
operators. To automate steerable needle procedures, physicians
first obtain a medical image (such as a computed tomography
(CT) or magnetic resonance imaging (MRI) scan) of the

Fig. 1. Top: A medical steerable needle (cyan) used to reach a nodule (green)
in the lung parenchyma for biopsy or cancer treatment while avoiding critical
anatomical structures such as the bronchial tubes (brown) and major blood
vessels (red). Bottom: Our resolution-complete motion planner uses search
trees built using different resolutions, illustrated here in 2D. A valid motion
plan goes from the start configuration (blue dot) to the goal point (green dot),
while avoiding obstacles (red) and satisfying kinematic constraints. The left
search tree uses a coarse resolution and failed to find a plan while the right
one uses a finer resolution and successfully generated a motion plan (yellow).

relevant anatomy, from which we can segment (manually or
automatically) the relevant anatomy, including the target to
reach and obstacles to avoid. The next key ingredient to the
automation of steerable needle procedures is motion planning,
which requires computing feasible motions to steer the needle
safely around the anatomical obstacles and to the target. An
example scenario of a lung biopsy is shown in Fig. 1 (top).

For the automation of medical procedures to be clinically
accepted, it is critical from a patient care, safety, and regulatory
perspective to certify the correctness and effectiveness of the
algorithms involved in procedure automation. Unfortunately,
no previously developed motion planner for steerable needles
offers a formal guarantee that it will compute a solution, when
one exists, in finite time, or notify the user that no solution
exists. Although many steerable needle motion planners have

 ���

been proposed, for all prior methods, the method either is not
guaranteed to return a solution (e.g., [15, 16, 20, 40, 47, 51,
53]) or is not guaranteed to find a solution within a clinically
reasonable distance of the target [34] when a solution exists.

As an important step toward creating a certifiable motion
planner for steerable needles, we introduce the first motion
planner for steerable needles that enables us to offer a guar-
antee under clinically appropriate assumptions that it can, in
finite time, compute an exact, obstacle-avoiding motion plan
to a specified target, or notify the user that no such plan
exists. In motion planning, such a guarantee is defined as
completeness [32]. A motion planner that lacks a completeness
guarantee may find solutions for only a subset of problem
instances, and when no solution is found by the planner, a user
has no way to distinguish whether the planner is incapable of
finding an existing solution or if no solution exists.

Providing a completeness guarantee for a steerable needle
motion planner is challenging in part because motion planning
for steerable needles in 3D with curvature constraints is at
least NP-hard [26, 48]. This challenge inspires us to consider
variants of completeness relevant to medical applications. We
note that some variants of completeness that only offer asymp-
totic guarantees, such as probabilistic completeness [32], are
not useful for needle steering since they only are guaranteed
to find a solution as computation time increases to infinity,
but medical applications typically require guaranteeing the
planner’s behaviour within a finite time.

In this paper, we focus on a specific type of completeness
relevant to real-world medical applications: resolution com-
pleteness [32]. Generally speaking, a resolution characterizes
the discretization of some space (e.g., state space, configura-
tion space, action space, and time). An algorithm is resolution
complete if there exists a fine-enough resolution with which
the algorithm finds a plan in finite time when a qualified
solution exists, and otherwise correctly returns that no such
plan exists. We illustrate at the bottom of Fig. 1 an example
showing searches with different resolutions for needle steering.

In this work, we present an efficient, resolution-complete
motion planner for steerable needles based on a novel adap-
tation of multi-resolution planning. The planner is resolution
complete, which means under some mild assumptions on the
system and the solution (detailed in Sec. V and Appendix
A), the planner, in finite time, is guaranteed to find a motion
plan as long as the problem admits a qualified solution. Our
main contributions include: (i) carefully defining the motion
primitives [17] used by our planner which are specifically
tailored to our domain of 3D steerable needles (Sec. IV-B);
(ii) introducing a set of domain-specific optimizations that
improve the efficiency of the algorithm while maintaining
resolution completeness (Sec. IV-G); and (iii) providing a
proof sketch to show the resolution completeness of our
method (Sec. V and Appendix A).

We demonstrate the performance of our planner in scenarios
based on lung biopsy. In these scenarios, a steerable needle
is deployed through a bronchoscope and must steer through
the lung parenchyma (the substance of the lung outside the

bronchial tubes) to a target while safely avoiding obstacles
(e.g., blood vessels). We compare in simulation our planner
with two existing steerable needle planners—one is sampling
based while the other is search based. Not only does our mo-
tion planner provide a resolution-completeness guarantee, but
compared to prior work it also computes plans of comparable
quality, faster, and with a higher success rate.

II. RELATED WORK

Steerable needles have many different designs, including
bevel-tip flexible needles [52, 12], symmetric-tip needles [13],
needles with curved stylet tips [38], needles with tendon-
actuated tips [43], and programmable bevel-tip needles [28,
46]. In this paper, we focus on bevel-tip flexible needles but
our approach can be easily used in any mechanical design
as long as the major kinematic constraint to consider is the
curvature of the needle trajectory.

A. Motion planning for steerable needles

Early work studied planning and control for steerable nee-
dles in the 2D plane [4, 6, 10, 44]. To fully utilize the
capability of steerable needles, later work began to focus more
on needle steering in 3D environments. Duindam et al. [15]
used inverse kinematics for planning but the planner was tested
only with simple geometrically shaped obstacles and provides
no theoretical guarantees.

Other planners built upon the probabilistic completeness
guarantees of sampling-based methods such as the Rapidly-
exploring Random Tree (RRT) [31]. Xu et al. [53] used an
RRT variant for needle steering but showed low efficiency
in computing time. Patil et al. [40] developed an RRT-based
needle planner that guides the tree expansion by sampling
in the 3D workspace (instead of the configuration space).
The efficiency obtained by sampling in the workspace and
not accounting for the needle’s orientation makes the plan-
ner extremely fast in practice. Unfortunately, this makes the
completeness proofs of the original RRT inapplicable and
probabilistic completeness is not guaranteed.

To avoid dealing with curvature constraints directly in the
RRT algorithms, there are also hybrid methods that combine
sampling and other techniques. Favaro et al. [16] proposed a
method that uses RRT* [25] that builds a tree embedded in
the 3D workspace to generate candidate plans of low cost,
followed by a smoothing step to account for the curvature
constraint. However, this decoupled approach does not provide
any theoretical guarantees.

Liu et al. proposed the Adaptive Fractal Tree (AFT) [34]
for needle steering and used a Graphics Processing Unit
(GPU) to further speed up their algorithm. The method uses
a greedy approach for path refinement—it iteratively uses the
lowest-cost path in the previous iteration for plan refinement.
However, expanding the best path of a coarse resolution does
not necessarily lead to a best path of a finer resolution.
Furthermore, the authors use a cost function consisting of
three factors, only one of which is the distance to the goal,
also known as the targeting error. Thus, when provided with

 ���

a required targeting error, paths produced by the method are
not guaranteed to adhere to this constraint since the targeting
error may be sacrificed for a better cost for the other two
terms. Pinzi et al. [41] later extended AFT to account for goal
orientation constraints.

Other methods focus on accounting for uncertainty during
needle insertion but do not account for completeness [20, 47,
51, 49]. To summarize, to the best of the authors’ knowledge,
none of the existing steerable needle planners provide provable
guarantees on the planner’s completeness.

B. Resolution-complete motion planners

Generally speaking, an algorithm is resolution complete if
it generates a plan to the goal whenever a solution exists
at the maximal resolution and returns failure otherwise [7].
This property guarantees that given a predefined maximal
resolution, the algorithm terminates in finite time and provides
a deterministic result.

Barraquand et al. [8] proposed a planner for single/multi-
body mobile robots with nonholonomic constraints. They for-
mally proved the planner is guaranteed to generate a solution
path when the discretization of the search parameters is fine
enough. This approach was later extended by Lindemann and
LaValle [33] to suggest a multi-resolution approach for 2D car-
like robots. Both these works [8, 33] serve as the algorithmic
foundations to the planner we present in this paper.

Sampling-based planners (such as RRT) typically ensure
probabilistic completeness (i.e., such a planner is guaranteed
to find a solution, if one exists, with probability one when
given infinite time). However, they can also be used to build
resolution-complete planners given some mild assumptions on
the minimal motion that the system can perform. Cheng et
al. [11] proposed a resolution-complete version of RRT for
systems that satisfy the Lipschitz condition. Yershov et al. [54]
formally analyzed the system conditions for the existence of
resolution-complete planners. Kleinbort et al. [27] later ana-
lyzed the assumptions for RRT’s probabilistic completeness in
kinodynamic planning. However their analysis can be adapted
to resolution-completeness guarantees.

Ljungqvist et al. [35] proposed a planner for a general two-
trailer system in 2D. They used a two-point boundary value
problem (2pBVP) solver to generate a set of motion primi-
tives connecting 2D grid points. Their planner is resolution-
complete and resolution-optimal with respect to the resolution
in the configuration space, which means the planner generates
a plan with minimal cost among all solutions that can be
represented as a sequence of motion primitives. Most of
the above-mentioned planners can be used to plan for 2D
nonholonomic robots. However, none account explicitly for
the challenges of planning with curvature constraints in 3D,
where the dimension of the search space is higher and there is
no efficient 2pBVP solver. In this work, we provide a planner
for 3D needle steering that is both efficient in practice and is
guaranteed to be resolution complete.

Fig. 2. The kinematics of a bevel-tip steerable needle. The needle can be
inserted (characterized by `) and axially rotated at its base (characterized
by θ).

III. PROBLEM DEFINITION

In this work, we consider steerable needles that operate
in a 3D workspace W ∈ R3, which is cluttered with
obstacles Wobs ⊂ W . We define the configuration space
(or C-space) of the steerable needle as X ⊂ SE(3). Each
configuration x = (p, q) ∈ X uniquely defines the pose (i.e.,
position p ∈ R3 and orientation q ∈ SO(3)) of the needle tip.
We define a projection function Proj(·) : X → W that projects
configurations to points in the workspace, i.e., Proj(x) = p.
A configuration x is collision free if Proj(x) /∈ Wobs,
and is in collision otherwise. The union of all collision-free
configurations is denoted as Xfree. Since we assume the needle
shaft perfectly follows its tip, a motion plan of the needle can
be uniquely defined as a trajectory σ : [0, 1] → X . And such
a motion plan σ is collision free if all configurations along the
trajectory are collision free. Namely, ∀s ∈ [0, 1], σ(s) ∈ Xfree.

We also need to consider the kinematics of the steerable
needle. We specifically consider steerable needles that are
highly flexible and have an asymmetric tip (e.g., a bevel)
[3, 12, 39, 52]; the asymmetric tip exerts asymmetric forces
on the tissue in front of the needle tip, and the high flexi-
bility enables the needle to curve substantially at maximum
curvature κmax as it moves through the tissue. Furthermore,
rotating the needle axially at its base changes the direction of
the needle’s asymmetric tip, enabling the needle to change its
direction of steering. See Fig. 2 for an illustration.

We say a motion plan is (kinematically) feasible if it never
exceeds the maximum curvature κmax. A valid motion plan for
the needle is both collision free and feasible. We also assume
there exists a resolution describing the smallest interval or
precision of the achievable motions, which may be limited
by the physical system’s hardware (e.g., motor, encoders,
controller, etc.) and its interaction with the environment. In
this paper, we determine this finest resolution by considering
the hardware’s ability to measurably change the steerable
needle tip’s position and orientation in tissue. Considering real-
world effects such as torsional wind up of the needle shaft
during actuation, the control resolution of the needle tip is
coarser than the control resolution of the needle base where
motors directly apply controls. Thus, we are not using minimal
motions of the motors. Instead, we consider the minimal
motions the tip of the needle can perform. We assume there
exists a lower-level controller taking care of controlling the tip
to the desired pose, as is common in needle steering systems.

 ���

We are now ready to state the steerable needle motion
planning problem.

Problem 1. A steerable needle motion planning problem is de-
fined as the tuple ∆ = (X ,Wobs,xstart, pgoal, τ, `max, κmax),
whereWobs is the obstacle set, xstart is the start configuration,
pgoal ∈ W is the goal point, τ > 0 is the goal tolerance, `max

is the maximum insertion length, and κmax is the maximum
curvature. The problem calls for computing a valid motion
plan σ that satisfies: (i) σ(0) = xstart, (ii) the Euclidean
norm ‖Proj(σ(1)) − pgoal‖2 ≤ τ , and (iii) trajectory length
`(σ) ≤ `max.

As we show in our later discussion (in Sec. V and Appendix
A), for any given instance of Problem 1, under some mild
assumptions, there exists some fine-enough resolution Rmin =
{δ`min, δθmin} (corresponding to the needle’s insertion and
axial rotation, respectively) for which our planner is guaran-
teed to find a solution in finite time (when one exists) or to
indicate that no solution exists.

IV. METHOD

A. Overview

Our needle planner builds a search tree T = (V, E) embed-
ded in the C-space with xstart as its root. Each node v ∈ V
is associated with a configuration xv ∈ X , and each edge
e = (v, u) ∈ E represents the transition from xv to xu. To
expand a node v ∈ V , we construct new nodes (children of v)
with motion primitives (to be explained shortly in Sec. IV-B),
which are pre-defined feasible motions. A child node vchild
is accepted and added to the search tree if the trajectory
from v to vchild is collision-free and vchild is valid (will be
detailed in Sec. IV-D). The search tree grows until there is
some node v with configuration xv whose projection is inside
the τ -neighborhood of pgoal (condition (ii) in Problem 1).

A key aspect of our search method (which is similar in
nature to other search-based planners [33]) is to use a set of
motion primitives defined using multiple resolutions. Instead
of expanding each node in our search tree using the entire set
of motion primitives, we start with coarse motion primitives
and use finer motion primitives as the search progresses.
Thus, we start (Sec. IV-B) by describing the parameters
required to define a motion primitive. After that, we continue
(Sec. IV-C) to detail a hierarchy of motion primitives together
with an ordering that will be used in our search algorithm. We
then describe our search algorithm in detail (Sec. IV-D) and
elaborate on the method we use to handle “similar” states, also
known as duplicate detection [14] (Sec. IV-F). We conclude
this section with some implementation details (Sec. IV-G).

B. Motion Primitives

Motion primitives, introduced by Frazzoli et al. [17], have
been used in many motion planners [23, 24, 33, 42, 35]. In
our setting, the motion primitives are a set of predefined kine-
matically feasible local motions. Roughly speaking, a motion
primitive defines with what curvature the needle curves, how
far the needle steers, and in what direction (see Fig. 3). Since

Fig. 3. A motion primitive is a circular arc defined asM = (κ, δ`, δθ). The
circular arc (dark green) lies in the curving plane (light green) that contains
the Z-axis (blue) at the start configuration xv . κ is the curvature of the arc, δθ
is the angle between the curving plane and the XZ-plane, and δ` is the length
of the arc. The figures show step-by-step how the child configuration xu =
xv ⊕M is generated.

for each motion primitive, the curvature κ is explicitly defined,
a motion primitive is guaranteed to be kinematically feasible
as long as κ ≤ κmax. As we will see in the proofs (Appendix
A), our definition of motion primitives guarantees resolution
completeness, and the experiments show that the definition
also the enables computation efficiency of our algorithm.

More formally, to steer from configuration xv , a mo-
tion primitive is defined as a three-tuple M = (κ, δ`, δθ),
where κ ∈ [0, κmax] is the curvature, δ` > 0 is the length
of the circular arc, and δθ ∈ [0, 2π) is the angle between the
curving plane and the XZ-plane of xv (see Fig. 3). Thus the ac-
tion space (or motion space) can be defined as A ⊂ R3, which
is the set of all motion primitives. We use xu = xv ⊕M to
denote the operation of extending xv with motion primitiveM
and obtaining the resultant configuration xu. See Fig. 3 for a
step-by-step determination of xu. In the context of a search
tree, by a slight abuse of notation, u = v ⊕M denotes the
resultant node u, obtained by extending node v with the motion
primitive M. We call M the extending primitive of node u.

Using motion primitives allows pre-computing intermediate
configurations and thus saving computation efforts during
planning by transforming these configurations to the frame
defined by xv . Since the trajectory produced with one motion
primitive is a circular arc, it is possible to densely interpolate
the trajectory for collision-checking purposes.

In the following sections, we show that δ` and δθ are
gradually refined in the algorithm. In contrast, we keep a
fixed set of curvatures, {0, κmax}, for all motion primitives.
As we will see (Sec. V and Appendix A) this does not hinder
the guarantees provided by our approach. Moreover, as we
demonstrate in our experiments (Sec. VI), these primitives,
coupled with our planner allow us to efficiently compute paths
for non-trivial instances where other planners fail.

C. Motion Primitive Hierarchy

Our algorithm uses a sequence of motion primitives, whose
resolution changes from coarse to fine. The coarsest motion
primitives are defined by some parameters δ`max and δθmax.
In our implementation and examples (e.g., Fig. 4) we have
that δθmax = π

2 and δ`max > 0 is a user-given parameter.

 ���

Fig. 4. Visualization of length and angle levels. Left: Visualization of
length levels. Smaller node sizes correspond to higher length levels. The
first length level (l` = 0) corresponds to motion primitives of maximal
length (δ`max). As l` increases, the resolution of length becomes higher. The
gray arrows illustrate how motion primitives with the first 4 length levels are
generated during refinement. Right: Visualization of angle levels. Nodes with
angle levels 0, 1, 2 are shown in red, yellow, and blue, respectively. The first
angle level (lθ = 0) corresponds to motion primitives of δθ = {0, π

2
, π, 3π

2
}.

As lθ increases, the resolution of orientation becomes higher. The circular
arrows illustrate how nodes with the first three angle levels are generated
during refinement. Middle: 3D visualization of length and angle levels.

Since δθ ∈ [0, 2π) and δθmax = π
2 , there exist four

orientations (δθ ∈ {0, 0.5π, π, 1.5π}) that have the coarsest
orientation (see Fig. 4). There exists only one coarsest length,
which is δ`max, since path length is accumulated when we
expand a node. To characterize how fine the resolution of a
motion primitive M = (κ, δ`, δθ) is, we define the notions of
length level l` and angle level lθ. More formally,

l`(M) = min{l ∈ Z | l ≥ 0,MOD(δ`, 2−l · δ`max) = 0},
lθ(M) = min{l ∈ Z | l ≥ 0,MOD(δθ, 2−l · δθmax) = 0},

where MOD(·) is the modulo operation.
For a motion primitive M = (κ, δ`, δθ), we refine the

resolution of both the insertion δ` and the orientation δθ. The
new motion primitives constructed by refining δ` are:

M`± = (κ, δ`± 2−(l`(M)+1) · δ`max, δθ). (1)

Similarly, the motion primitives constructed by refining δθ are:

Mθ± = (κ, δ`, δθ ± 2−(lθ(M)+1) · δθmax). (2)

It is straight-forward to see that the refined motion primi-
tives M`− and M`+ both have a length level of l`(M) + 1
and the refined motion primitives Mθ− and Mθ+ both have
an angle level of lθ(M) + 1 (see Fig. 4).

Note that when refining a motion primitive with l`(M) = 0
(resp. lθ(M) = 0), we ignoreM`+ (resp.Mθ−) as they both
exceed the range of exploration.

Similar to Lindemann and LaValle [33], our search algo-
rithm expands nodes according to a node’s rank. Rank captures
both the depth of a node in the search tree and the fineness
of resolution along the branch connecting the node from the
root. We define the rank of the root node to be zero, the rank

Fig. 5. Nodes of the first four ranks. We use motion primitives with κ = 0
(straight lines) and κ = κmax (arcs with maximum curvature).

Algorithm 1 MultiResolutionSearch
Input: Wobs,xstart, pgoal, τ, κmax, `max, δ`max

1: Θ← {0, π2 , π,
3π
2 },K ← {0, κmax}

2: root ← (xstart, 0) . The root has rank 0
3: OPEN ← {root}, CLOSED ← ∅
4: while not OPEN.empty() do
5: v ← OPEN.extract()
6: if Valid(v,Wobs, pgoal, `max) then
7: if not existSimilarConfig(v, CLOSED) then
8: if Terminate(v, pgoal, τ) then
9: return RetrievePlan(v)

10: for M∈ Primitives(K, δ`max,Θ) do
11: OPEN.insert(v ⊕M)
12: CLOSED.insert(v)

13: if v != root then
14: for M∈ RefinedPrimitives(Mv) do
15: OPEN.insert(v.parent⊕M)

16: return NULL

of any other node v is recursively defined as:

Rank(v) = Rank(v.parent) + l`(Mv) + lθ(Mv) + 1. (3)

For a visualization, see Figs. 4 and 5.

D. Algorithm Description

We run an A*-like search where nodes are ordered according
to their rank (Eq. 3). A distinctive feature from (vanilla) A* is
that when we expand a node, we also increase the resolution of
the motion primitives used to expand its parent and add nodes
using these finer motion primitives to the search’s priority
queue. The rest of this section formalizes this idea.

Alg. 1 shows the pseudocode of our needle planner. We
first initialize the coarsest orientations and the curvature set
(line 1), then initialize the OPEN list and CLOSED set (line 3).
The search algorithm then iteratively extracts nodes from the
OPEN list (line 5), where nodes are ordered in a monotonically
non-decreasing order according to their rank.

Only at this point (line 6) the extracted node is validated
(also known as lazy validation [21, 36]). Validation of node

 ���

v involves ensuring that: (i) the accumulated trajectory length
should not exceed the maximum insertion length `max; (ii) the
goal point should be inside or close to the reachable region
of xv (Sec. IV-G); (iii) v should not be a duplicated node
(Sec. IV-G); and that (iv) the circular arc connecting v.parent
and v should be collision-free. An invalid node will be rejected
and discarded. For a valid node v, we further check if there
exists any similar configuration in the CLOSED set in order to
avoid considering highly similar configurations (Sec. IV-F and
Appendix A). A valid node without a similar configuration is
accepted, expanded, and added to the CLOSED set (lines 10-
12). The search terminates if the associated configuration of
the accepted node satisfies the goal tolerance.

In our search algorithm, only the coarsest child nodes are
added to the OPEN list during the initial expansion of a node
(lines 10-11). But additional child nodes, created with finer
motion primitives, are added when the coarse child nodes are
extracted from the OPEN list (line 15). More specifically,
when node v is extracted, we refine its extending motion
primitive Mv following Eq. 1 and 2 (line 14), and use the
refined motion primitivesM`± andMθ± to expand v.parent.

E. Cutoff Resolution

As specified in Sec. III, for a physical needle-steering
robot there exists some smallest interval or precision of
the achievable motions, which induces the minimal insertion
and axial rotation δ`min and δθmin, respectively. We term
δ`min and δθmin as the cutoff resolution and stop adding
refined nodes when the extending motion primitiveM satisfies
2−l`(M) · δ`max < δ`min or 2−lθ(M) · δθmax < δθmin.

F. Duplicate Detection

To avoid re-expanding the same or highly similar nodes
multiple times, search-based planners often employ duplicate
detection [14] that prunes so-called “duplicate” nodes. To
prune duplicate nodes and enable the planner to rapidly
explore the entire C-space, we reject a node if there already
exists a similar configuration in the search tree (line 7).
More formally, we reject node v with configuration xv if
∃u ∈ V, ρ(xu,xv) < dsim, where dsim > 0 is a radius we
use to identify similar configurations. Here, ρ(·) is a distance
metric defined on X which in our work is defined as

ρ(xu,xv) = ‖pu − pv‖2 + α · dist^(qu, qv), (4)

where α > 0 is a weighting parameter and dist^() is
the angular distance between two orientations. Note that to
guarantee resolution completeness, the value of dsim depends
on other system parameters detailed in Sec. V and Appendix
A.

G. Implementation Details

We now describe several implementation details used to
further speed up our approach. To distinguish between dif-
ferent implementations of our approach we refer to the basic
version of our Resolution-Complete Search (i.e., without the
implementation details described below) as RCS BASIC and

Fig. 6. (a) An illustration of reachable and unreachable regions in 2D. The
case in 3D is similar. The unreachable region can be generated by rotating
the circles around the Z-axis (blue vector), which creates a donut-like shape
in 3D that is unreachable. It also visualizes how we check goal-reachability
when considering tolerance τ . We reject a configuration if the relative position
of pgoal falls in the inner region (darker orange). (b) The algorithm creates
a direct connection to the goal when pgoal is outside but still close to the
boundary of the reachable region. We use a circular arc with curvature κmax

to steer towards pgoal and the arc stops at the closest point to pgoal. (c) An
example of valid nodes with rank 0-3 after checking goal reachability.

to the (basic) version that does not use similar-node rejection
(i.e., when not performing the test in line 7) as RCS NR.
The versions that use all the following implementation details
without and with parallelization (explained shortly) will be
referred to as RCS and RCS PARA, respectively.

1) Early pruning by testing for goal reachability: We can
prune away nodes that, due to curvature constraints, cannot
be part of a path that reaches the goal (see Fig. 6 for a
2D illustration). The curvature constraint defines so-called
“unreachable regions” of a node and testing if the goal pgoal
belongs to a node’s unreachable region can be done efficiently
(see Fig. 6). Such nodes are pruned away and not expanded.

However, recall that we allow some goal tolerance τ . Thus,
instead of requiring the goal point to be inside a node’s reach-
able region, we only require that the distance between pgoal
and the boundary of the reachable region is smaller than τ .

Our model allows a needle to make “U-turns” and reach the
region we currently mark as unreachable. But in our specific
setting, the needle tip cannot (physically) turn more than 90◦

as the needle might buckle and shear through the tissue, so
we discard such motions. Thus we don’t need to account for
a needle entering the unreachable region due to a “U-turn”.

2) Direct goal connection: For each node v that is added
to the search tree with corresponding configuration xv , we
attempt to connect xv to the goal point pgoal with a circular
arc (a similar technique is used in the RRT-based needle
planner [40]). This arc lies in the plane that is determined
by the tangent vector of xv and pgoal, and its curvature can be
computed according to the relative position of xv and pgoal.

If pgoal lies outside the reachable region of xv but the
distance between pgoal and the boundary of the reachable
region is no larger than τ , we steer the needle in the plane
following a circular arc of curvature κmax to the point closest

 ���

to pgoal. When the circular arc is collision-free, a solution has
been found and we terminate the search. This approach can
often dramatically speed up the search.

3) Equivalent node pruning: As we use a multi-resolution
approach, there may exist multiple nodes representing the
exact same configurations. Our approach for rejecting similar
nodes (Sec. IV-F) can be used to reject equivalent ones.
However, testing if two nodes are equivalent is more efficient
and saves future computationally expensive collision checking.

As we are refining the arc length δ` and orientation δθ
simultaneously, it is possible for a node to be expanded more
than once with the same motion primitive: first as a node with
finer arc length, then as a node with finer orientation. To avoid
extending the same node with the same motion primitive, we
give each motion primitive a unique index and the parent node
keeps record of which motion primitives have been explored
and allows only unexplored motion primitives when adding
finer nodes (line 15).

4) Parallelism: One of the most time-consuming tasks in
our search algorithm is processing a node after it is extracted
from the OPEN list (namely, evaluating if the path to this node
is collision free, computing the relevant motion primitives for
its parent node and the corresponding new nodes). To this
end, we implemented a multi-threaded version of the algorithm
where each thread is tasked with processing a node extracted
from the OPEN list. This enables processing nodes in parallel
while maintaining the correctness of the algorithm by adding
standard locking mechanisms to the shared data structures (i.e.,
OPEN list and CLOSED set).

V. THEORETICAL GUARANTEES

In this section we state and give a proof overview of the the-
oretical guarantees that our algorithm provides. We start with
some general definitions pertaining to the notion of resolution
completeness adapted from LaValle [32]. Unfortunately, their
generality requires masking important problem-related details
such as, “is planning defined in the C-space or in the control
space?” or “what are the specific assumptions on the system?”
This is also the reason that existing proofs (e.g., [7, Appendix
A] and [11, Thm. 5.2]) cannot be used as is. Thus, we quickly
move to the specific setting of motion planning for steerable
needles which requires specifying the exact problem-related
details and definitions. Here we start with an overview of our
proof explaining where we rely on the aforementioned proofs
and where we are required to account for our specific domain
and planner.

A. General resolution-related definitions

Definition 1 (Resolution). Resolution is a finite set of parame-
ters R = {r0, r1, ..., rn}, where each ri ∈ R characterizes the
discretization of some space (e.g. state space, configuration
space, action space, and time), and the smaller ri is, the finer
the corresponding resolution is.

Definition 2 (Resolution completeness). For a general motion
planning problem ∆, a planner P is resolution complete if
when a so-called qualified solution to ∆ exists, there exists

some resolution Rmin such that running P with resolution
Rmin on ∆ finds a solution in finite time.

Clearly the above definition is more a general intuition
than a precise definition. We need to define what a “qualified
solution is” and what “running P with resolution Rmin on ∆”
means. These notions together with our main theoretic result
(Thm. 2) are formalized in Appendix A.

B. Proof overview

As a first step we need to state how Def. 1 is instantiated
in our setting. Here, the resolution is a pair R = {r`, rθ} that
characterizes the action space (namely, the insertion δ` and
rotation δθ of the needle). However, this geometric charac-
terization of the needle motion is a simplification of the way
we control a needle in practice—via insertion and rotation
velocity. This difference is important as the relative insertion
and rotation velocity creates paths that have curvatures ranging
between zero and κmax. In contrast, our motion primitives ei-
ther follow a straight line or a path of maximal curvature κmax.
Thus, the first part of our proof shows that considering these
two fixed curvatures allows us to approximate any path arbi-
trarily well. This is done using the notion of duty cycling [37]
and is detailed in Sec. B of Appendix A. The original idea
in [37] is designed specifically for bevel-tip needles. We look
at the problem from a geometric perspective and decouple the
guarantees and the needle mechanism, thus making it valid for
needles with different designs.

The second part of our proof, detailed in Sec. C of Appendix
A, states that any path that adheres to some mild assumptions
can be approximated arbitrarily well by a very specific set
of motion primitives—those with some fixed resolution. This
is a somewhat technical but important step—it will allow
us to argue that as long as the cutoff resolution (defined
in Sec. IV-E) is fine enough, our algorithm RCS NR is
guaranteed to find a solution in finite time (when no node
rejection is applied). Here we adapt the original proof by
Barraquand et al. [7, Appendix A] that considers paths in a
two-dimensional workspace. As our needle moves in a 3D
workspace, we cannot use the proof as-is and detail some
required adaptations.

These parts are summarized in the following theorem (stated
informally to avoid using notations defined in Appendix A).

Theorem 1 (Resolution completeness of RCS NR). Let
∆ = (X ,Wobs,xstart, pgoal, τ, `max, κmax) be a steerable
needle motion planning problem. Under the assumption that
the system is Lipschitz continuous and there exists a traceable
solution with non-zero clearance1, there exists some cutoff
resolution for which RCS NR will find a solution in finite
time.

The third part of our proof, described in Sec. E of Appendix
A, shows that even with similar node rejection, the basic
version of our algorithm RCS BASIC still finds a solution

1Refer to Appendix A for detailed definitions of Lipschitz continuous,
traceable trajectory, and clearance.

 ���

when several conditions are satisfied. Here we adapt the proofs
provided by Cheng and LaValle [11, Thm. 5.2]. In their proof,
a fixed control period is assumed for every motion primitive.
Thus, we need to incorporate the machinery developed in the
second part of our proof (Sec. C of Appendix A) and obtain
the following result (again, stated informally to avoid using
notations defined only in Appendix A).

Theorem 2 (Resolution completeness with similar-node re-
jection). Let ∆ = (X ,Wobs,xstart, pgoal, τ, `max, κmax) be
a steerable needle motion planning problem. Under the as-
sumption that the system is Lipschitz continuous and there
exists a traceable solution that has sufficient clearance, there
exists some cutoff resolution {δ`min, δθmin} and some radius
for similar node rejection dsim (which is a function of τ, `max

and δ`min) for which RCS BASIC will find a solution in
finite time.

In the final part of the proof (Sec. F of Appendix A),
we show that none of the implementation details we use
to improve the algorithm’s efficiency hinder the theoretical
guarantees of RCS BASIC.

VI. RESULTS

We evaluate our new resolution-complete motion planner for
steerable needles using scenarios based on the medical task of
lung biopsy. Lung cancer is the deadliest form of cancer in the
United States, killing over 150,000 Americans each year [5].
Early diagnosis is critical for patient survival, and biopsy of
suspicious nodules is required for diagnosis. Steerable needles
deployed from bronchoscopes have the potential to safely
and accurately reach nodules throughout the lung for biopsy
and localized treatment [29, 50]. We illustrate in Fig. 1 a
volumetric model of the relevant anatomy segmented from
a CT scan [18]. In this procedure, the steerable needle is
deployed from a bronchoscope inside the lung and must steer
from the start pose just outside a bronchial tube (the furthest
pose reachable by the bronchoscope) to the nodule while
avoiding anatomical obstacles that include the large blood
vessels, the bronchial tubes, and the lung boundary.

To create test cases, we randomly sampled 50 collision-
free start configurations along the bronchial tube walls (i.e.,
points reachable by the bronchoscope from which the steerable
needle can be deployed), each with 10 reachable goal points
in the lung parenchyma (i.e., points in the tissue of the lung
outside the bronchial tubes in which nodules requiring biopsy
may occur), totaling 500 test cases (see Fig. 7 for 10 plans
computed by RCS). To avoid skewing the data with trivial test
cases, we discarded test cases where the start configuration can
be connected directly to the goal point with a collision-free
arc. Additionally, we also disallowed test cases where there are
obstacles directly in front of the start configuration deeming
the problem unsolvable. Finally, note that it is not guaranteed
that a valid plan exists for a test case.

We consider a steerable needle with a maximum curva-
ture of κmax = 0.01(mm−1), device diameter of 2mm,

Fig. 7. Three views of the the lung environment. The needle steers to
targets (green) while avoiding anatomical obstacles including large blood
vessels (red), bronchial tubes (brown), and the lung boundary (gray). We
also show 10 of the 500 test cases in which the steerable needle must deploy
from the bronchoscope’s tip in the bronchial tube to the nodule in the lung
parenchyma. For these example test cases, we show plans computed by RCS
(cyan).

and maximum insertion length of 100mm. The simulated
workspace was reconstructed from a preoperative chest CT
scan where Wobs is a point cloud representing the anatom-
ical obstacles described above. We use a collision-checking
resolution of 0.5mm and a goal tolerance of τ = 1.0mm.

We compared in simulation the variants of RCS with two
steerable needle planners: an RRT-based planner [30, 40]
and AFT [34, 41]. While the original AFT algorithm is
GPU accelerated, here we present results for our CPU-based
implementation and only focus on the feasibility of the method
and not on the computing times (we let AFT run until it
terminates). Similar to [41], we define the cost function for
AFT as

Cost(σ) = `(σ)/`max + ‖σ(1)− pgoal‖2/τ, (5)

which accounts both for insertion length and final tip error.
We also ran a search-based planner denoted as SINGLE RES
that includes all optimizations of RCS mentioned in Sec. IV-G
but that uses only the finest resolution (with no multiple
resolutions). For additional details about the parameters used
for each planner, see Appendix B. All experiments were run
on a dual 2.1GHz 16-core Intel Xeon Silver 4216 CPU and
100GB of RAM. Code for our proposed method is available
on GitHub [19].

We now present results pertaining to the success rate of
the different algorithms. In our setting, the success rate is the
ratio of solved cases among all 500 test cases. For RCS, RRT,
and their variants, each planner was allowed 100 seconds. The
results are shown in Fig. 8. First, among RCS variants, RCS
performed much better than RCS BASIC, indicating the
first three optimizations introduced in Sec. IV-G dramatically
improved the efficiency of the algorithm. Furthermore, except
for the obvious overhead effect in the early stage (< 10ms),
RCS PARA achieved even better performance. The single-
resolution planner SINGLE RES only achieved a 24.2%
success rate, suggesting that the multi-resolution approach in
RCS variants is valuable. Second, the single-threaded RCS

 ���

Fig. 8. Success rate as a function of time for RCS and RRT.

achieved better performance than the single-threaded RRT and
multi-threaded RRT PARA. From the perspective of running
time, RCS PARA’s average running time for solved cases is
0.43 seconds, and it took 0.83 seconds to reach a success rate
of 91.2%, which is roughly 120 times faster than RRT PARA.

Since we only had a CPU-based version of the AFT
algorithm, we do not compare success rate over time. Instead,
we compare the success rate when RCS runs for 100 seconds
and AFT finishes two tree refinements. Additionally, as AFT
produces many paths while optimizing a cost function that
does not necessarily favor paths with minimal goal toler-
ance (Eq. 5), we chose the one with the minimal goal tolerance
(not with the minimal cost) for success rate analysis. The 5-
level AFT achieved a success rate of 65.8%, with many of the
failures due to the computed paths not satisfying the maximum
allowed targeting error of τ = 1mm.

For additional experiments evaluating the quality of the
plans produced by each planner, see Appendix C.

VII. CONCLUSION & FUTURE WORK

In this paper, we took an important step toward creating a
certifiable motion planner for steerable needles. Specifically,
we introduced a resolution-complete planner that dramatically
outperforms state-of-the-art needle planners in a clinically
inspired simulation. This was achieved by carefully designing
motion primitives and applying domain-specific optimizations.
We formally showed that the planner is resolution complete,
which means that under some mild assumptions on the system
and the solution, the planner, in finite time, is guaranteed to
find a plan as long as the problem admits a qualified solution.

We view this work as an algorithmic foundation required to
obtain certifiable motion planning for steerable needles. Our
planner is the first resolution-complete planner for steerable
needles, but more work remains. Our analysis showed that,
under some mild assumptions, when a qualified solution exists,
if the cutoff resolution is fine enough and the path has some
clearance (distance from the obstacles), the algorithm will find
it. However, it would be valuable for medical applications
to provide the precise relation between the system’s controls
and this cutoff resolution. Subsequently, we need to provide

the precise relation between this cutoff resolution (i.e., what
does it mean to be “fine enough”) and the clearance of paths
(i.e., what does it mean “some clearance”?). Future work
will use this foundation to compute the relation between
the aforementioned parameters in order to give physicians
certifiable software for motion planning for steerable needles.

We believe that the algorithmic foundations laid out in this
work will also allow us to provide guarantees on the quality
of the solution—a critical requirement in our medical domain.
Here, trajectory quality can correspond to minimizing damage
to tissue, the time the patient is under anaesthesia, and more
(see [9] and references within). Consequently, we plan to
revisit the way nodes are ordered in our priority queue (recall
that now they are ordered according to their rank) in order to
provide optimality (or near-optimality) guarantees.

ACKNOWLEDGMENTS

This research was supported in part by the U.S. National
Institutes of Health (NIH) under award R01EB024864, the Is-
raeli Ministry of Science & Technology (MOST) by grant No.
102583 and 2028142, and the United States-Israel Binational
Science Foundation (BSF) by grant No. 1018193.

We thank Janine Hoelscher, Inbar Fried, Maxwell Emerson,
Tayfun Efe Ertop, Margaret Rox, Josephine Granna, Alan
Kuntz, Jason A. Akulian, and Robert J. Webster III for their
discussions on steerable needles for lung applications.

REFERENCES

[1] Aurora - NDI. https://www.ndigital.com/products/
aurora/. Accessed: 2021-02-28.

[2] Niki Abolhassani, Rajni Patel, and Mehrdad Moallem.
Needle insertion into soft tissue: A survey. Medical
Engineering & Physics, 29(4):413–431, 2007.

[3] Ron Alterovitz, Ken Goldberg, and Allison Okamura.
Planning for steerable bevel-tip needle insertion through
2D soft tissue with obstacles. In IEEE Int. Conf. Robotics
and Automation (ICRA), pages 1640–1645. IEEE, 2005.

[4] Ron Alterovitz, Thierry Siméon, and Ken Goldberg. The
stochastic motion roadmap: A sampling framework for
planning with markov motion uncertainty. In Robotics:
Science and Systems (RSS), 2007.

[5] American Cancer Society. Cancer Facts & Figures.
Technical report, American Cancer Society, 2016.

[6] Ali Asadian, Mehrdad R Kermani, and Rajni V Patel.
Robot-assisted needle steering using a control theoretic
approach. J. Intelligent and Robotic Systems, 62(3):397–
418, 2011.

[7] Jerome Barraquand and Jean-Claude Latombe. Robot
motion planning: A distributed representation approach.
Int. J. Robotics Research (IJRR), 10(6):628–649, 1991.

[8] Jérôme Barraquand and Jean-Claude Latombe. Nonholo-
nomic multibody mobile robots: Controllability and mo-
tion planning in the presence of obstacles. Algorithmica,
10(2):121–155, 1993.

[9] Michael Bentley, Caleb Rucker, Chakravarthy Reddy,
Oren Salzman, and Alan Kuntz. A novel shaft-to-

 ���

https://www.ndigital.com/products/aurora/
https://www.ndigital.com/products/aurora/

tissue force model for safer motion planning of steer-
able needles. Computing Research Repository (CoRR),
abs/2101.02246, 2021.

[10] Mariana C Bernardes, Bruno V Adorno, Philippe
Poignet, and Geovany A Borges. Semi-automatic needle
steering system with robotic manipulator. In IEEE Int.
Conf. Robotics and Automation (ICRA), pages 1595–
1600. IEEE, 2012.

[11] Peng Cheng and Steven M LaValle. Resolution complete
rapidly-exploring random trees. In IEEE Int. Conf.
Robotics and Automation (ICRA), volume 1, pages 267–
272. IEEE, 2002.

[12] Noah J Cowan, Ken Goldberg, Gregory S Chirikjian,
Gabor Fichtinger, Ron Alterovitz, Kyle B Reed, Vinutha
Kallem, Wooram Park, Sarthak Misra, and Allison M
Okamura. Robotic needle steering: design, modeling,
planning, and image guidance. In Jacob Rosen, Blake
Hannaford, and Richard M Satava, editors, Surgical
Robotics: System Applications and Visions, chapter 23,
pages 557–582. Springer, 2011.

[13] Simon P DiMaio and Septimiu E Salcudean. Needle
insertion modeling and simulation. IEEE Trans. Robotics
and Automation, 19(5):864–875, 2003.

[14] Wei Du, Sung-Kyun Kim, Oren Salzman, and Maxim
Likhachev. Escaping local minima in search-based
planning using soft duplicate detection. In IEEE/RSJ
Int. Conf. Intelligent Robots and Systems (IROS), pages
2365–2371. IEEE, 2019.

[15] Vincent Duindam, Jijie Xu, Ron Alterovitz, Shankar
Sastry, and Ken Goldberg. Three-dimensional motion
planning algorithms for steerable needles using inverse
kinematics. Int. J. Robotics Research (IJRR), 29(7):789–
800, 2010.

[16] Alberto Favaro, Leonardo Cerri, Stefano Galvan, Ferdi-
nando Rodriguez Y Baena, and Elena De Momi. Auto-
matic optimized 3D path planner for steerable catheters
with heuristic search and uncertainty tolerance. In IEEE
Int. Conf. Robotics and Automation (ICRA), pages 9–16.
IEEE, 2018.

[17] Emilio Frazzoli, Munther A Dahleh, and Eric Feron.
Real-time motion planning for agile autonomous vehi-
cles. Journal of Guidance, Control, and Dynamics, 25
(1):116–129, 2002.

[18] Mengyu Fu, Alan Kuntz, Robert J Webster III, and Ron
Alterovitz. Safe motion planning for steerable needles
using cost maps automatically extracted from pulmonary
images. In IEEE/RSJ Int. Conf. Intelligent Robots and
Systems (IROS), pages 4942–4949. IEEE, 2018.

[19] Mengyu Fu, Oren Salzman, and Ron Alterovitz.
steerable-needle-planner. https://github.com/
UNC-Robotics/steerable-needle-planner, 2021.
Accessed: 2021-6-9.

[20] K. Hauser, R. Alterovitz, N. Chentanez, A. Okamura,
and K. Goldberg. Feedback control for steering needles
through 3D deformable tissue using helical paths. In
Proceedings of Robotics: Science and Systems, Seattle,

USA, June 2009.
[21] Kris Hauser. Lazy collision checking in asymptotically-

optimal motion planning. In IEEE Int. Conf. Robotics
and Automation (ICRA), pages 2951–2957, 2015.

[22] Jeffrey Ichnowski and Ron Alterovitz. Motion planning
templates: A motion planning framework for robots with
low-power CPUs. In IEEE Int. Conf. Robotics and
Automation (ICRA), pages 612–618. IEEE, 2019.

[23] Fahad Islam, Oren Salzman, and Maxim Likhachev.
Provable indefinite-horizon real-time planning for repet-
itive tasks. In Int. Conf. Automated Planning and
Scheduling (ICAPS), volume 29, pages 716–724, 2019.

[24] Fahad Islam, Anirudh Vemula, Sung-Kyun Kim, Andrew
Dornbush, Oren Salzman, and Maxim Likhachev. Plan-
ning, learning and reasoning framework for robot truck
unloading. In IEEE Int. Conf. Robotics and Automation
(ICRA), pages 5011–5017. IEEE, 2020.

[25] Sertac Karaman and Emilio Frazzoli. Sampling-based
algorithms for optimal motion planning. Int. J. Robotics
Research (IJRR), 30(7):846–894, 2011.

[26] David G. Kirkpatrick, Irina Kostitsyna, and Valentin Pol-
ishchuk. Hardness results for two-dimensional curvature-
constrained motion planning. In Canadian Conference on
Computational Geometry (CCCG), 2011.

[27] Michal Kleinbort, Kiril Solovey, Zakary Littlefield,
Kostas E Bekris, and Dan Halperin. Probabilistic
completeness of RRT for geometric and kinodynamic
planning with forward propagation. IEEE Robotics and
Automation Letters, 4(2):x–xvi, 2018.

[28] Seong Young Ko, Luca Frasson, and Ferdinando Ro-
driguez y Baena. Closed-loop planar motion control of
a steerable probe with a “programmable bevel” inspired
by nature. IEEE Trans. Robotics, 27(5):970–983, 2011.

[29] A Kuntz, P J Swaney, A Mahoney, R H Feins, Y Z
Lee, Robert J Webster III, and Ron Alterovitz. Toward
transoral peripheral lung access: Steering bronchoscope-
deployed needles through porcine lung tissue. In Hamlyn
Symposium on Medical Robotics, pages 9–10, 2016.

[30] Alan Kuntz, Luis G Torres, Richard H Feins, Robert J
Webster III, and Ron Alterovitz. Motion planning for
a three-stage multilumen transoral lung access system.
In IEEE/RSJ Int. Conf. Intelligent Robots and Systems
(IROS), pages 3255–3261. IEEE, 2015.

[31] Steven M LaValle. Rapidly-exploring random trees: A
new tool for path planning. 1998.

[32] Steven M LaValle. Planning algorithms. Cambridge
university press, 2006.

[33] Stephen R Lindemann and Steven M LaValle. Multires-
olution approach for motion planning under differential
constraints. In IEEE Int. Conf. Robotics and Automation
(ICRA), pages 139–144. IEEE, 2006.

[34] Fangde Liu, Arnau Garriga-Casanovas, Riccardo Secoli,
and Ferdinando Rodriguez y Baena. Fast and adaptive
fractal tree-based path planning for programmable bevel
tip steerable needles. IEEE Robotics and Automation
Letters, 1(2):601–608, 2016.

 ���

https://github.com/UNC-Robotics/steerable-needle-planner
https://github.com/UNC-Robotics/steerable-needle-planner

[35] Oskar Ljungqvist, Niclas Evestedt, Marcello Cirillo,
Daniel Axehill, and Olov Holmer. Lattice-based motion
planning for a general 2-trailer system. In IEEE Intel-
ligent Vehicles Symposium (IV), pages 819–824. IEEE,
2017.

[36] Aditya Mandalika, Sanjiban Choudhury, Oren Salzman,
and Siddhartha S. Srinivasa. Generalized lazy search for
robot motion planning: Interleaving search and edge eval-
uation via event-based toggles. In Int. Conf. Automated
Planning and Scheduling (ICAPS), pages 745–753, 2019.

[37] Davneet S Minhas, Johnathan A Engh, Michele M
Fenske, and Cameron N Riviere. Modeling of needle
steering via duty-cycled spinning. In Annual Interna-
tional Conference of the IEEE Engineering in Medicine
and Biology Society (EMBC), pages 2756–2759. IEEE,
2007.

[38] Stephen Okazawa, Richelle Ebrahimi, Jason Chuang,
Septimiu E Salcudean, and Robert Rohling. Hand-held
steerable needle device. IEEE/ASME Trans. Mechatron-
ics, 10(3):285–296, 2005.

[39] Wooram Park, Jin Seob Kim, Yu Zhou, Noah J
Cowan, Allison M Okamura, and Gregory S Chirikjian.
Diffusion-based motion planning for a nonholonomic
flexible needle model. In Proc. IEEE Int. Conf. Robotics
and Automation (ICRA), pages 4611–4616, April 2005.

[40] Sachin Patil, Jessica Burgner, Robert J Webster III,
and Ron Alterovitz. Needle steering in 3D via rapid
replanning. IEEE Trans. Robotics, 30(4):853–864, 2014.

[41] Marlene Pinzi, Stefano Galvan, and Ferdinando Ro-
driguez y Baena. The adaptive hermite fractal tree
(AHFT): a novel surgical 3D path planning approach
with curvature and heading constraints. Int. J. Computer
Assisted Radiology and Surgery, 14(4):659–670, 2019.

[42] Mihail Pivtoraiko and Alonzo Kelly. Kinodynamic
motion planning with state lattice motion primitives.
In IEEE/RSJ Int. Conf. Intelligent Robots and Systems
(IROS), pages 2172–2179. IEEE, 2011.

[43] Peng Qi, Hongbin Liu, Lakmal Seneviratne, and Kaspar
Althoefer. Towards kinematic modeling of a multi-DOF
tendon driven robotic catheter. In Annual International
Conference of the IEEE Engineering in Medicine and
Biology Society (EMBC), pages 3009–3012. IEEE, 2014.

[44] Kyle B Reed, Ann Majewicz, Vinutha Kallem, Ron
Alterovitz, Ken Goldberg, Noah J Cowan, and Allison M
Okamura. Robot-assisted needle steering. IEEE Robotics
and Automation Magazine, 18(4):35–46, 2011.

[45] D Caleb Rucker, Jadav Das, Hunter B Gilbert, Philip J
Swaney, Michael I Miga, Nilanjan Sarkar, and Robert J
Webster III. Sliding mode control of steerable needles.
IEEE Trans. Robotics, 29(5):1289–1299, 2013.

[46] Riccardo Secoli and Ferdinando Rodriguez y Baena.
Adaptive path-following control for bio-inspired steer-
able needles. In IEEE International Conference on
Biomedical Robotics and Biomechatronics (BioRob),
pages 87–93. IEEE, 2016.

[47] Konstantin M Seiler, Surya PN Singh, Salah Sukkarieh,

and Hugh Durrant-Whyte. Using Lie group symmetries
for fast corrective motion planning. Int. J. Robotics
Research (IJRR), 31(2):151–166, 2012.

[48] Kiril Solovey. Complexity of planning. arXiv preprint
arXiv:2003.03632v2 [cs.RO], 2020.

[49] Wen Sun, Sachin Patil, and Ron Alterovitz. High-
frequency replanning under uncertainty using parallel
sampling-based motion planning. IEEE Trans. Robotics,
31(1):104–116, 2015.

[50] Philip J Swaney, Arthur W Mahoney, Bryan I Hartley,
Andria A Remirez, Erik Lamers, Richard H Feins, Ron
Alterovitz, and Robert J Webster III. Toward transoral
peripheral lung access: Combining continuum robots and
steerable needles. Journal of Medical Robotics Research,
2(01):1750001, 2017.

[51] Jur Van Den Berg, Sachin Patil, Ron Alterovitz, Pieter
Abbeel, and Ken Goldberg. LQG-based planning, sens-
ing, and control of steerable needles. In Workshop on
the Algorithmic Foundations of Robotics (WAFR), pages
373–389. Springer, 2010.

[52] Robert J Webster III, Jin Seob Kim, Noah J Cowan,
Gregory S Chirikjian, and Allison M Okamura. Non-
holonomic modeling of needle steering. Int. J. Robotics
Research (IJRR), 25(5-6):509–525, 2006.

[53] Jijie Xu, Vincent Duindam, Ron Alterovitz, and Ken
Goldberg. Motion planning for steerable needles in
3D environments with obstacles using rapidly-exploring
random trees and backchaining. In IEEE Int. Conf. Au-
tomation Science and Engineering, pages 41–46. IEEE,
2008.

[54] Dmitry S Yershov and Steven M LaValle. Sufficient con-
ditions for the existence of resolution complete planning
algorithms. In Workshop on the Algorithmic Foundations
of Robotics (WAFR), pages 303–320. Springer, 2010.

 ���

APPENDIX A. RESOLUTION COMPLETENESS

A. Preliminaries

Before we state the different parts of our proof,
we introduce some definitions. Recall that a steerable
needle motion planning problem is a tuple ∆ =
(X ,Wobs,xstart, pgoal, τ, `max, κmax) and that ρ(·) is a dis-
tance metric defined on X (Eq. 4). Finally, recall that A
is the action space, which is the set of all valid motion
primitives. Throughout the proof, for some sequence of motion
primitives M , we will use x ⊕ M to denote the resultant
trajectory obtained by sequentially applying elements in M
to x.

Definition 3 (Strong clearance). Let σ : [0, 1] → X be some
trajectory. We say that σ has strong γ-clearance if

∀s ∈ [0, 1], min
x∈Xobs

ρ(σ(s),x) > γ,

where Xobs = cl(X \ Xfree) and cl(·) is the closure of a set.

Definition 4 (Trajectory approximation). Let σ : [0, 1] → X
be some trajectory. We say that another trajectory σ′ is an
ε-approximation of σ if the following conditions are satisfied:

(i) boundary condition: ∀s ∈ {0, 1}, ρ(σ(s), σ′(s)) < ε;
(ii) one-way Hausdorff distance:

max
t∈[0,1]

{ min
s∈[0,1]

ρ(σ(s), σ′(t))} < ε.

Definition 5 (Decomposable trajectory). Let σ : [0, 1] → X
be some trajectory. We say that σ is decomposable if it can
be decomposed into a finite sequence of motion primitives.
Namely, there exists Mσ = {M1, . . . ,Mn} ⊂ A such that
σ = σ(0)⊕Mσ .

Definition 6 (Traceable trajectory). Let σ : [0, 1] → X be
some trajectory. We say that σ is traceable if for any given
ε > 0, there exists a decomposable trajectory that is an ε-
approximation of σ.

Note that in the definitions of decomposable and traceable
trajectories we allow any arbitrary set of motion primitives.
This allows us to decouple the planner’s ability of finding a
path using a given set of motion primitives with the expres-
siveness of the motion primitives.

Definition 7. We define a distance metric on action space A
as the two-way Hausdorff distance between two resultant
trajectories x⊕M1 and x⊕M2. Formally, we have

ρA(M1,M2) = max
{

max
t∈[0,1]

{ min
s∈[0,1]

ρ(σM1(s), σM2(t))},

max
s∈[0,1]

{ min
t∈[0,1]

ρ(σM1
(s), σM2

(t))}
}
,

where σM1 = x ⊕ M1 and σM2 = x ⊕ M2. It is worth
to note that changing x does not change the relative position

between the two trajectories. Thus, without losing generality,
we have x = (p, q) where p = (0, 0, 0) and q = (1, 0, 0, 0).

Definition 8 (Lipschitz continuous). The system is Lipschitz
continuous if ∀x1,x2 ∈ X ,∀M1,M2 ∈ A,

ρ(x1 ⊕M1,x2 ⊕M2) ≤ Ls(ρ(x1,x2) + ρA(M1,M2)),

where Ls > 0 is a constant.

Finally, as we will see, it will be convenient to introduce
the notion of a finest set of motion primitives.

Definition 9 (Finest set of motion primitives). Given a reso-
lution R = {r`, rθ}, and a set of curvatures K, we define the
finest set of motion primitives as

Mfs(R,K) =

{
(κ, r`, n · rθ)

∣∣∣ κ ∈ K,n ∈ [0,⌊2π

rθ

⌋]
⊂ Z

}
.

B. Approximating curves with arbitrary curvatures

When a bevel-tip needle is inserted only, it follows a
trajectory with curvature κmax. When the needle is inserted
while applying axial rotational velocity that is relatively larger
than the insertion velocity, it follows a straight line (i.e., of
curvature zero). Minhans et al. [37] introduced the notion
of duty-cycling to approximate any curvature for bevel-tip
steerable needles. Roughly speaking, combining periods of
needle spinning (i.e., zero-curvature trajectories) with periods
of non-spinning (i.e., maximal-curvature trajectories) enables
the needle to achieve any curvature up to the maximum needle
curvature. This idea is formalized in the following lemma.

Lemma 1 (Arbitrary curvature approximation using duty-cy-
cling). Let σ be a decomposable trajectory and let εd > 0 be
some real value. There exists a finite sequence of motion primi-
tives MD in which every element has curvature κ ∈ {0, κmax}
such that the trajectory σ(0) ⊕MD is an εd-approximation
of σ.

Proof sketch. Here, to explicitly show how the approxima-
tion factor is used. And to provide a more general discussion,
we provide a proof from a geometric perspective (and not
control-based as in the original work by Minhas et al. [37]).

The trajectory σ is decomposable, thus there exists a se-
quence of motion primitives Mσ = {M1, . . . ,Mn} such that
σ = σ(0)⊕Mσ and each motion primitive Mi has arbitrary
curvature κi ∈ [0, κmax]. To approximate Mi, we construct a
sequence of motion primitives Mi = {M(1)

i , . . . ,M(ni)
i } that

satisfies

M(1)
i .δθ =Mi.δθ,

∀j ∈ [2, ni],M(j)
i .δθ = 0,

∀j ∈ [1, ni],M(j)
i .κ ∈ {0, κmax}.

Namely, the first motion primitive M(1)
i ensures that both

trajectories use the same curving plane (see Fig. 3) and the
the rest of the sequence stays within this curving plane and
approximates the (arbitrary) curvature κi.

 ���

Fig. 9. Illustration of approximation with duty-cycling. Left: Decom-
pose Mi into multiple segments with length `i. Right: Use three segments
to approximate one segment of Mi, where the segments have a curvature
of 0, κmax, 0, respectively. The one-way Hausdorff distance (marked as
εd in the figure) depends on `i. For a given κmax, to approximate Mi

(with curvature κ), the shorter `i is, the smaller εd is. This is because
εd < r · (1/cos(0.5η) − 1), where r = 1/κ is the radius of curvature
and η = `i/r is the central angle.

We then decomposeMi into small equal-length segments of
length `i (except possibly the last segment) where the specific
value of `i is chosen according to the value of εd. We then use
three motion primitives to approximate each of these segments
as illustrated in Fig. 9. It is not hard to see that (i) the start and
end configurations of Mi and Mi are identical, and (ii) the
one-way Hausdorff distance between Mi and each M(j)

i is
less than εd if `i is carefully chosen.

Let Mεd
σ = M1 ·M2 · . . . ·Mn be this sequence of all the

newly constructed motion primitives. Then it is straightforward
that σ(0)⊕Mεd

σ is an εd-approximation of σ. �

C. Approximating curves using fixed-length primitives

Lemma 2 (Fixed-resolution trajectory approximation). Let σ
be a decomposable trajectory and let εr > 0 be some
real value. If the system is Lipschitz continuous (Def. 8),
there exists a fine resolution R(σ, εr) = {r`, rθ} and a finite
sequence of motion primitives MR(σ,εr) such that σ(0) ⊕
MR(σ,εr) is an εr-approximation of σ. Moreover MR(σ,εr) ⊆
Mfs(R(σ, εr),Kσ), where Kσ is the set of curvatures that
appear along σ.

Proof sketch (adapted from [7, Appendix A]). The trajec-
tory σ is decomposable, thus there exists a finite sequence
of motion primitives Mσ = {M1, . . . ,Mn} such that σ =
σ(0)⊕Mσ . Set Kσ =

⋃
iMi.κ to be the set of all curvatures

that appear in Mσ .
To approximate each motion primitiveMi using primitives

from the finest set of motion primitives Mfs(R(σ, εr),Kσ)
(Def. 9), we construct a sequence motion primitive Mi =

{M(1)
i , . . .M(ni)

i }, where

M(1)
i .δθ = ki · rθ,

∀j ∈ [2, ni],M(j)
i .δθ = 0,

∀j ∈ [1, ni],M(j)
i .κ =Mi.κ,M

(j)
i .δ` = r`.

Fig. 10. Illustration of the action distance between two motion primitives with
the same curvature. Here the shorter motion primitive lies in curving plane
1, thus min{δ`1, δ`2} = OAcurv and |δ`1− δ`2| = OCcurv−OAcurv =
BCcurv.

Similar to the sequence constructed for Lemma 1, the first
motion primitiveM(1)

i accounts for the curving plane (though
here it can only be approximated) and the the rest of the
sequence stays within this curving plane and accounts for
the length of the circular arc the trajectory follows in this
plane. Applying the sequence Mi is equivalent to applying
one motion primitive M̃i = (Mi.κ, ni · r`, ki · rθ). Thus, by
carefully choosing r` and rθ, distance between Mi and M̃i

(see Def. 7) can be arbitrarily small.
This is done for every motion primitive Mi. As M is a

finite sequence of size n, for any ε > 0 we can always find a
fine-enough resolution {r`, rθ} that ensures that

ρA(Mi,M̃i) < ε,∀i ∈ [1, n].

This is because, given that both motion primitives have equal
curvature, ρA(M1,M2) < |δθ1−δθ2|·min{δ`1, δ`2}+|δ`1−
δ`2|, where δ`i = Mi.δ` and δθi = Mi.δθ. See Fig. 10 for
illustration.

Since the system is Lipschitz continous,

ρ(σ(0)⊕M1 · · · ⊕Mn, σ(0)⊕ M̃1 · · · ⊕ M̃n)

≤Ls(ρ(σ(0)⊕M1 · · · ⊕Mn−1, σ(0)⊕ M̃1 · · · ⊕ M̃n−1)

+ ρA(Mn,M̃n)

≤Lns · ρ(σ(0), σ(0)) +

n∑
i=1

Ln−i+1
s · ρA(Mi,M̃i)

<ε · Ls(L
n
s − 1)

Ls − 1
.

Thus, to ensure that σ(0) ⊕ {M̃1, . . . ,M̃n} is an εr-
approximation of σ, we only need to ensure that ε ≤
εr(Ls−1)
Ls(Lns−1)

. As both n and Ls are fixed, we can choose ε to
be as small as needed thus the desired fine resolution exists
which cocludes the proof. �

Corollary 1. Let σ be a traceable trajectory and let ε > 0
be some real value. If the system is Lipschitz continuous
(Def. 8), there exists a fine resolution R(σ, ε) = {r`, rθ}
and a finite sequence of motion primitives MR(σ,εr) ⊆

 ���

Mfs(R(σ, ε), {0, κmax}) such that σ(0) ⊕MR(σ,εr) is an ε-
approximation of σ.

Proof sketch. Set εt = εd = εr = ε/3. According to
Def. 6, there exists a decomposable trajectory σt that is an εt-
approximation of σ. Moreover, according to Lemma 1, there
exists a finite sequence of motion primitives MD in which
every element has curvature κ ∈ {0, κmax} such that the
trajectory σd = σ(0)⊕MD is an εd-approximation of σt.

Note that by construction σd is decomposable. Thus, ac-
cording to Lemma 2, there exists a fine resolution R(σ, εr) =
{r`, rθ} and a finite sequence of motion primitives MR(σ,εr)

such that σr = σ(0) ⊕ MR(σ,εr) is an εr-approximation of
σd. Moreover, MR(σ,εr) ⊆ Mfs(R(σ, εr), {0, κmax}) as the
construction in the proof of Lemma 2 does not add new
curvatures.

Finally, as εd = εd = εr = ε/3. Then the trajectory σr is
an ε-approximation of σ. �

D. Resolution completeness (without similar node rejection)
Theorem 1 (Resolution completeness of RCS NR). Let ∆ =
(X ,Wobs,xstart, pgoal, τ, `max, κmax) be a steerable needle
motion planning problem. If a solution to ∆ is traceable, has
strong γ-clearance for some γ > 0, and the system is Lipschitz
continuous then there exists some cutoff resolution Rmin for
which RCS NR will find a solution in finite time.

Proof sketch. Let σ be a traceable solution with clear-
ance γ. Following Cor. 1, there exists a fine resolution
R(σ, ε) = {r`, rθ} and a finite sequence of motion primitives
MR(σ,ε) ⊆Mfs(R(σ, εr), {0, κmax}) such that σ(0)⊕MR(σ,ε)

is an ε-approximation of σ. In our algorithm, the resolu-
tions are divided by half as the length level l` and angle
level lθ increase. Thus, there exists a fine-enough resolution
R̃ = {2−l` ·δ`max, 2

−lθ ·δθmax} that satisfies 2−k` ·δ`max < r`,
2−kθ · δθmax < rθ. Setting the cutoff resolution Rmin to be
finer (both with respect to the insertion as well as rotation)
than R̃ ensures that MR(σ,ε) can be approximated arbitrarily
well.2

The search tree built with RCS NR is a subtree of a dense
tree in which each node is expanded with every element in
Mfs(R̃, {0, κmax}). This is because every coarse motion prim-
itive used in RCS NR can be decomposed into a sequence
of motion primitives in Mfs(R̃, {0, κmax}). Additionally, if
we allow the algorithm run until the OPEN list is exhausted,
every node in the dense tree (except for those that are in
collision) will be explored by RCS NR. Since the dense
tree encodes all possible trajectories that can be decomposed
with Mfs(R̃, {0, κmax}), when the solution σ is traceable,
has γ-clearance, and the system is Lipschitz continuous, an
ε-approximation (with ε < γ) of σ will be encoded in the
dense tree and thus will be explored by RCS NR. �

2To be more precise, one needs to account for the cases where R(σ, εr) is
not in the sequence of resolutions considered by the algorithm and we may
introduce additional error when approximating R(σ, εr) with R̃. However,
using the techniques we previously used this can be easily accounted for. We
omit this in our proof sketch.

E. Resolution completeness (with similar node rejection)

We are now ready to show that even with similar node
rejection, our algorithm is still resolution complete

Theorem 2 (Resolution completeness with similar-node re-
jection). Let ∆ = (X ,Wobs,xstart, pgoal, τ, `max, κmax) be a
steerable needle motion planning problem. RCS BASIC will
find a solution in finite time, if the following conditions are
satisfied:

(C1) The system is Lipschitz continuous.
(C2) The cutoff resolution Rmin is fine enough and it satisfies

δ`min = 2−l`max · δ`max, δθmin = 2−lθmax · δθmax.
(C3) The radius dsim used to reject similar nodes satisfies

0 < dsim < min

{
δ`min,

τ(Ls − 1)

2(LHs − 1)

}
,

where H = d`max/δ`mine.
(C4) There exists a traceable solution plan σ with τ

2 goal tol-
erance and strong γ-clearance (Def. 3) for γ > τ+δ`min

2 .

The proof of Thm. 2 uses Thm. 1 and then follows Cheng
and LaValle [11, Thm. 5.2]. We include it here for complete-
ness.

Proof. According to Thm. 1, RCS NR terminates in finite
time, thus RCS BASIC also terminates in finite time since
more nodes are rejected. We now prove that RCS BASIC can
find a solution plan if conditions (C1)-(C4) are satisfied.

Since σ is traceable, there exists some fine resolu-
tion R(σ, ε) can be explored by RCS BASIC (as dis-
cussed in Thm. 1), with which we can construct an ε-
approximation of σ. Denote the decomposable approximation
σ′, and the sequence of motion primitives to compose it Mσ′ =
{M1, . . . ,Mn}. When Mσ′ is sequentially applied to xstart,
we obtain a sequence of configurations {x0,x1, . . . ,xn},
where x0 = xstart,xi = xi−1 ⊕Mi, i ∈ [1, n]. For the rest
of the proof, we use Mσ[i, j] = {Mi, . . . ,Mj} to denote a
subsequence of Mσ′ . We also use x+Mσ′ [i, j] to denote the
configuration after sequentially applying {Mi, . . . ,Mj} to x.

If we run RCS NR, every xi will be explored and σ will
be constructed when the search terminates. However, if we
run RCS BASIC, we prune nodes using duplicate detection
(Sec. IV-F). Thus, we need to show that even with pruning,
RCS BASIC will still find a plan. This will be done by
showing that the same sequence of motion primitives can be
applied to configurations that are “similar” to x0 . . .xn and the
resultant plan σ̃ exists using the fact that σ̃ is “similar” to σ
and that σ has γ-clearance. The rest of this proof formalizes
this idea.

Recall that (C3) ensures that dsim < δ`min which guarantees
that any motion primitive will end up at a non-similar config-
uration. Now, let xi be the first configuration that is pruned
because of a similar configuration (see Alg. 1, line 7). We will
say that xi is replaced by the similar configuration x′i. As i ≥
1, in the worst case we have i = 1. We then apply Mσ′ [2, n]
to x′1. According to (C1), the maximal error accumulated to
x′n = x′1 + Mσ′ [2, n] is ε1 = ρ(x′n,xn) = Ln−1s · dsim.

 ���

Fig. 11. A 2D illustration of configuration pruning. σ is shown as black
nodes, the plan after x′

1 prunes x1 is shown as red nodes, the plan after x′′
2

prunes x′
2 is shown as green nodes, the plan after x(3)

3 prunes x′′
3 is shown

as yellow nodes, the plan after x
(4)
4 prunes x

(3)
4 is shown as blue nodes,

and the pruning configuration x
(5)
5 is shown as a purple node. The solid

circular arrows represent elements in Mσ , and the dashed circular arrows
represent connections to predecessors of the pruning configurations. In this
particular example, as long as we guarantee that ‖Proj(x5)− pgoal‖2 ≤ τ

2

and that ε =
∑5
i=1 εi ≤

τ
2

, the resultant plan which ended at x
(5)
5 still

satisfies the required goal tolerance.

Similarly, when x′2 is replaced by x′′2 , we apply Mσ′ [3, n]
to x′′2 and for x′′n = x′′2 +Mσ′ [3, n], the accumulated error is
ε2 = ρ(x′′n,x

′
n) = Ln−2s · dres. The same analysis applies for

{x3, . . . ,xn}. According to (C3), the total accumulated error
then becomes:

ε = ρ(x(n)
n ,xn) ≤ ρ(x′n,xn) + · · ·+ ρ(x(n)

n ,x(n−1)
n)

= ε1 + · · ·+ εn =
Lns − 1

Ls − 1
· dres <

τ

2
· L

n
s − 1

LHs − 1
≤ τ

2
.

According to (C4), we have that ‖Prog(xn) − ggoal‖2 ≤ τ
2 .

Thus,

‖Proj(x(n)
n)− pgoal‖2

≤ ‖Proj(x(n)
n)− Proj(xn)‖2 + ‖Proj(xn)− pgoal‖2

≤ τ/2 + τ/2 = τ.

This implies that even in the worst case where all possible
replacements happen, the final configuration x

(n)
n still satisfies

the required goal tolerance (see Fig. 11).
Additionally, we prove that when pruning happens for x(j)

i ,
the motion plan constructed with Mσ′ [i, n] is still collision-
free. We have shown above that ρ(x

(n)
n ,xn) < τ

2 . Moreover,
we have that ∀i ∈ [0, n], ρ(x

(n)
i ,xi) <

τ
2 since less error is

accumulated for i < n. Thus we have that

∀k ∈ [i, n], ‖Proj((x
(j)
k)− Proj((xk)‖2 ≤ ρ(x

(j)
k ,xk) <

τ

2
.

And for any configuration x̃ along edge (x
(j)
k ,x

(j)
k+1), we have

that

min{‖Proj(x̃)− Proj(xk)‖2

‖Proj(x̃)− Proj(xk+1)‖2} <
τ + δ`min

2
.

According to (C4), γ > τ+δ`min

2 , there always exist a
small value ε = γ − τ+δ`min

2 . Thus, as long as σ′ is
an ε-approximation of σ, σ̃ is then guaranteed to be a γ-
approximation of σ. σ’s strong γ-clearance guarantees that
the motion plan constructed with Mσ′ [i, n] is collision-free.

To summarize, as long as the required conditions are satis-
fied, RCS BASIC still finds a motion plan. �

F. Resolution completeness while incorporating implementa-
tion details

Corollary 2. RCS and RCS PARA will also find a solution
in finite time, if the conditions in Thm. 2 are satisfied. In other
words, none of the implementation details hinder the resolution
completeness guarantees.

Proof sketch. For RCS, goal reachability checks only reject
invalid nodes, direct goal connection only provides early
terminations without affecting the search tree, and equivalent-
node pruning provides an efficient way to reject identical
configurations early.

For RCS PARA, parallelization may change the order of
processing nodes, but does not change the essence of the
proofs. Thus, RCS and RCS PARA also find a motion plan
as RCS BASIC does. �

APPENDIX B. PLANNER PARAMETERS FOR EVALUATION

In this section we describe the parameters used by each
planner. For the precise definition of the different parameters,
the reader is referred to the original papers describing the
RRT-based algorithm [40] and AFT [41].

(i) RRT: We set goal biasing: 5% and direct goal connecting
ratio: 100%. The multi-threaded version of RRT, denoted
as RRT PARA, was implemented with Motion Planning
Templates (MPT) [22] and used 60 threads.

(ii) AFT: We used two tree refinements and used the cost
function defined in Eq. 5. Additionally, we used five
levels of increments of the fractal structure, a tree density
of 17, and we rotated the tree around the root axis 10
times, each time with a step of π

5 rad (these values were
chosen according to the analysis provided by Pinzi et
al. [41]).

(iii) RCS: The system cutoff resolution is computed for
control frequency 40Hz, which corresponds to a time
interval of 0.025s: δ`min = 5(mm/s) · 0.025s =
0.125mm, δθmin = 2π(rad/s) · 0.025s ≈ 0.157rad.
The value of insertion and rotation velocities are taken
from [45] and the control frequency is the measurement
rate of the NDI Aurora tracking system [1]. Maximum
length step: δ`max = 20mm. Distance metric weighting
parameter: α = 0.05. In addition, we empirically de-
termined that dsim = 5.5e − 5. We use 60 threads for
RCS PARA, the multi-threaded version of RCS.

As is mentioned in Sec. III, for RCS, we determine the
finest resolution by considering the hardware’s ability to
measurably change the steerable needle tip’s position and
orientation in tissue. We use conventional constant insertion

 ���

TABLE I
PLANNER PERFORMANCE COMPARISON

RRT PARA AFT RCS PARA
Success rate 91.2% 65.8% 97.6%

Avg. relative length 0.998 1.003 1.0
Avg. targeting error 0.053mm 0.207mm 0.051mm

and rotational velocities (as are commonly used in steerable
needle robots) and the magnetic tracker reading frequency
(commonly used for tracking steerable needle tips) to deter-
mine the minimal motions. These real-world minimal motions
of the steerable needle tip are the minimal motions explored
by the search.

APPENDIX C. ADDITIONAL EXPERIMENTS

In this section we present additional experiments evaluating
the quality of the plans produced by each planner. More
specifically, we focus on the trajectory length `(σ) and the
final targeting error ‖σ(1)− pgoal‖2.

For AFT, both are considered in the cost function. For RCS
and RRT, although the plan quality is not explicitly optimized,
as more running time is given, there is a chance to improve the
plan quality. For both planners, we use the same cost function
defined in Eq. 5 to pick a plan with the lowest cost from all
motion plans generated. Since RCS and RRT only consider
a plan to be valid if it satisfies the required targeting error,
the final resulting plan is guaranteed to satisfy the targeting
error. Similar to the previous comparison, RRT PARA and
RCS PARA are allotted a running time of 100 seconds, and
the planner keeps running after the first solution is found to
generate more plans. We pick as the final result the solution
with minimal cost among all solutions found. AFT uses two
tree refinements. The results are shown in Table I. Since
different test cases have different ranges of plan length, we
take the best plan produced by RCS PARA as the baseline,
and compute the plan length relative to it. Values in Table I
are averaged over all test cases that are successfully solved by
all planners.

Due the limited insertion length and the maximum curvature
constraint, all three planners produced plans with (roughly)
similar lengths. RRT PARA computed the lowest-cost trajec-
tory on average. This may due to the steer function in RRT
always trying to connect to a sampled point with the shortest
arc. For the two search-based methods, RCS PARA achieved
better plan length since the resolution in RCS can be much
finer than that of AFT. As for the targeting error, because
RCS PARA and RRT PARA both try to connect to the goal
point directly, they can efficiently reduce the targeting error
and achieve average targeting errors much smaller than AFT.

 ���

	Introduction
	Related Work
	Motion planning for steerable needles
	Resolution-complete motion planners

	Problem Definition
	Method
	Overview
	Motion Primitives
	Motion Primitive Hierarchy
	Algorithm Description
	Cutoff Resolution
	Duplicate Detection
	Implementation Details
	Early pruning by testing for goal reachability
	Direct goal connection
	Equivalent node pruning
	Parallelism

	Theoretical Guarantees
	General resolution-related definitions
	Proof overview

	Results
	Conclusion & future work

	Resolution Completeness
	Preliminaries
	Approximating curves with arbitrary curvatures
	Approximating curves using fixed-length primitives
	Resolution completeness (without similar node rejection)
	Resolution completeness (with similar node rejection)
	Resolution completeness while incorporating implementation details

	Planner parameters for evaluation
	Additional experiments

