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Abstract

Membrane bioreactors (MBR) for wastewater treatment, which have increasingly been employed for the last 15 years and which play
an important role in wastewater treatment. It is the continuation of the fundamental contribution of sewage water treatment, which is
extended and complemented in various aspects. In this project an advanced control approach is made to bring desired purification for
sewage water. The major challenge in controlling MBR is the large amount of uncertainty present in the process models, in the
unknown inflow conditions, and in the limited measurement information. Hence, controller development is driven by the necessity to
structure uncertainty, to attenuate its harmful effects, and to exploit it wherever possible. Such a control method is model based
predictive controller. The frame work for the model-based control of membrane bioreactors (MBR) is developed, which aims at the
economical optimization of MBR operation
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1. INTRODUCTION In general, however MBR operating costs are highan those
. . ) of conventional wastewater treatment plants (WWM#)ich
Water is a global resource indispensable for lifeearth. Its om0y sedimentation basins for the biomass separatlarge
responsible and sustainable use and reuse is a of@glenge potential to increase the economic feasibility dmilies in the
of the 21st century. The increasing world popufatiand improvement of their operational policy. Until tgdanly
industrialization lead to a rising demand for pégaind process  gimpje control strategies have been employed Adsdwontrol
water, and in many areas existing supplies arersiing at approaches frequently used in the chemical proiehisstry
critical rates. Untreated wastewater threatensctritéological have not been applied to MBR due to the large airdy in
systems by introducing large amounts of nutriefosjc or the biological and the filtration processes, in thmdlow

endocrines  species, heavy metals and other harmful oregiction, and in the limited measurement infoiorat
components. For these reasons efficient waternezat and
reuse have become decisive social and economstadss While this is not different from the obstacles égular WWTP
) . ) operation, the increased complexity of MBR requieéficient
In many countries legal limits on the effluent centrations of  onjine control to exploit their full potential. Hee, this project
selected components are tightened, e. g. by thepgan Water focuses on the process control of MBR. It aims miging
Framework Directive issued in 2000. Strict effluenhstraints advanced approaches from many research areas. aoetml
however together with increasing wastewater loadmahd and optimization together to provide a capablexitile and

efficient treatment processes. At the same timeintbeeasing generic control architecture which takes the cheratics and

privatization of wastewater treatment facilitiesquees a peculiarities of MBR and MBR operation into accaubtie to
stronger focus on t_heir economic performance. Tdusetext the process complexity model-based control appemcire
provides the motivation for the control approacésented here. proposed. Time and unit scale separation are peerto
MBR combine classical biological wastewater treatimwith obtain sub problems of lower complexity for diffate
subsequent membrane filtration. The membrane eparstes disturbance dynamics and for both the biology ahé t
the biomass of the biological treatment from th¢enaMBR membrane system. For each of them suitable mopibjem
offer high effluent quality, reliable biomass segiam and formulations, and efficient solution algorithms deéo be
small space requirements. formulated. The coordination between the sub probleon

. ) . different time scales and between the units musbbsidered.
These properties make them an appealing alternasipecially

when effluent constraints are tight, when spackniged and
when existing plants need to be upgraded.
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2. PROCESS DESCRIPTION OF MEMBRANE
BIOREACTOR

Wastewater treatment in day today life is a pregsieed in
view of decreasing surface water resources andndall
groundwater levels. Increasing water consumptiomdates
the intensified reuse of water and has leaded ¢oeasingly
strict legislative limits on effluent concentrat®on In

consequence, wastewater treatment has becomeeaargstry
with high annual product volume and financial irntwesnts

(Gray, 2004).

Economical pressure calls for efficient processutsmhs.
Membrane bioreactors (MBR) are one promising teldgyoin
this context (Wintgens et al., 2005). MBR combingot
technologies to efficiently and reliably purify viewater up to
high quality standards: traditional biological tment to
remove carbon, nitrate, phosphorus compounds dmekguent
membrane filtration to separate the biomass anderoth
particulate matter from the purified water.

Although each MBR has its unique properties, thae main
design features which are common to most plantst&Mater
enters the plant and is temporarily stored in astevater tank
to level out peaks in the inflow rate and concditns.

Mechanical units such as sieves and sand filten®ve coarse
particulate matter and fat. The subsequent biolsgypically
divided into two zones, the denitrification and rifitation
which can each comprise one or several basins.

Here the biological reactions take place, turninge t
contaminants into biomass, carbon dioxide and geseo
nitrogen. The nitrification basin is aerated to\pde dissolved
oxygen. Sludge can be withdrawn from the bottorthefbasin.

A recirculation stream transports sludge from titefication
back to the denitrification. Finally, a membrandt geparates
the inert as well as the biologically active partite matter
from the product water. The product water is witvdn, while
the particulate matter is retained in the system.

In the configuration shown here the membrane wrjtiires an
additional air stream, whose function is discusseer. In the
following sections, the main process are unitsnstaater tank,
mechanical cleaning, biology, and membrane system a
discussed.
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Fig 1 Process Diagram for MBR

Finally, the MBR process as a whole is considenéghlighting

its characteristics in comparison to conventionastewater
treatment plants (WWTP) and the couplings betweea t
biological and the membrane system, the developnuént
advanced model-based control approaches for MBR s
motivated.

3. MODEL-BASED CONTROL OF MBR

Efficient control of membrane bioreactors (MBR) &
challenging task. The uncertainty in the procesgetits and
mechanisms, the stiff process dynamics, the laakedningful
and reliable online measurements, the highly dyoaamd
uncertain inflow and the hardly understood relatdps
between the biology and the filtration system psigmificant
difficulties.

The objective of advanced control approaches forRMB to
realize a reliable and cost efficient purificatioh wastewater
up to specified standards in spite of these chgdien

State-of-the-art of MBR control is based on theezignce in
controlling conventional biological treatment plenthe MBR
biology is controlled in the same fashion as regbialogy,

though partly at different set points, e. g. athieigbiomass
concentrations. Typical control schemes are Pl tygntrol of
the dissolved oxygen or ammonia concentrations.

The membrane system is operated according to thposets
suggested by the manufacturer or by experiencedatups.
Fixed set points for the controlled variables asenmon, with
some variation to meet the required net flux[6].
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The main challenge is to deal on the one hand thi¢hhigh
uncertainty and stiff dynamics of the two complgstems and
on the other hand with their interaction. Givenstkituation
together with the high number of controlled and ipalated
variables, constraints and objectives a model-bappdoach to
the problem seems inevitable.

Model-based control approaches offer the advantiagethey
can accommodate process and input constraints,
incorporate economic objectives in addition topssht control,
Can deal with high process complexity, and Consio&st,
present, and predicted future process behaviour.

The process dynamics are very stiff and recallimg ¢yclic
behaviour of the filtration system there are coesible
structural differences between the operation ofttieogy and
of the membrane system.

It is therefore expected to be highly impractical even
impossible to describe the entire system with oelehso an
alternative approach is to divide the MBR contraltpem into
several sub problems, which can be approached tailtbred
methods[6]. The key idea of the latter is to sefgarthe
disturbance and process dynamics according to te&want
time scales and to assign them to different inlzted
operational layers.

4. SCHEMATIC CONTROLLER FLOW
DESCRIPTION FOR THE PROCESS PLANT
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Fig. 2 Schematic Controller Flow Diagram of Process Plant

On the left and right of Fig.2 the control systesn the biology
and the control system related to the membrane aret
depicted respectively. Various coordinators are gested
between the two systems. The vertical axis reptegée time
scales on which the control layers operate, startith the
slowest dynamics from above.

The operational layers depicted in Fig.2 are
planning/scheduling, dynamic real-time optimizat{@RTO),
non-linear model predictive control (NMPC), basatcol, and
state and parameter estimation.

The base control and the estimation layers areexiad to the
controlled unit, which can be the real plant otanpsimulation
layer [2]. On the planning/scheduling layer fundataé

Canplanning decisions about the operation of the pket made

(Shah, 1998). This layer determines the objectivas well as
the path inequality constrainty§ and equality eq) and
inequality {i) endpoint constraints of process operation.

The objectives may e. g. include economical andogical
objectives, and the constraints may refer to efflue
concentration limits or tank holdups. Based onittiermation
from the planning/scheduling layer, the optimalectories of
the inputsi and outputs are computed on the D-RTO layer by
solving a non-linear, constrained, dynamic optiriaa

problem.
NMPC
PID
Loveland cffiLent
Air Blower conrenteation
Flonw
Inflow sewage Plant RECYCLEDWATER
water

Fig.3 Proposed method block involving NMPC system

Accordingly, complex models with good predictivepahilities
have to be employed. If the inputsvere implemented as such,
plant model mismatch and disturbances would inbljitéead
to divergence of the optimaly) and the real (y) output
trajectories. Typically the computation of the D-®Pproblem
is too demanding to be performed on the time soélthese
disturbances. Hence the NMPC layer is requirecafmquately
fast responses.

In NMPC, an optimization problem is solved againf how
the objective is not an economical one anymore, that
minimization of the difference between the optimatl the real
input and output trajectories. The model employed tbe
NMPC layer may be of less complexity, as the ptaalic
horizon is smaller and the model only needs to dmrate in
the subspace around the real and optimal trajestori

The NMPC layer provides corrected inputs u. If ffirecess
deviates too far from the optimal solution, the NMRyer will
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not be able to realize the desired behaviour angntberefore
periodic or intelligently triggered updates of tH2-RTO
trajectory are required. However, MBR plants posagsique
features, which allow simplifying the concept atm&opoints
and requiring extensions at others.

With respect to the biology, the planning/schedytmd the D-

RTO layers have been merged into a dynamic predicti
scheduling layer. On this new layer the scheduliof

operational strategies (objectives and constraiigsyolved

simultaneously with the D-RTO problem.

In this project, a framework for the model-basedhtoal of
membrane bioreactors (MBR) is developed, which aanthe
economical optimization of MBR operation [2]. It ithe
continuation of the fundamental contribution of &u(2006),
which is extended and complemented in various &spec

Hence, controller development is driven by the ssitg to
structure uncertainty, to attenuate its harmfuk&f, and to
exploit it wherever possible. Planning is underdtas strategic
decision making for the operation of one or sevphaits e. g.
based on long-term predictions of market prizecustomer
demand.

Scheduling on the other hand is concerned withfalf#ément

of fairly specific production requirements on a lp time

horizon (Shah, 1998). In both approaches, disdetesions are
made concerning e.g. investments, the employmemedhin
units or pipelines or the sequencing of productiampaigns.

In D-RTO, optimal set points or set point trajecterfor the

manipulated and the controlled variables of theoeiated

process are computed. Obviously planning, schegluéind set
point optimization are interrelated, while the dmgyr of

interdependency is specific to each considered gsmc
Uncertainty is a major challenge to all schedulapgproaches.
It can be shown that nominally optimal solutionseldi

suboptimal or even infeasible solutions when redlizinder
uncertainty. Uncertainty is mostly related to thed®l structure,
the model parameters, and disturbances.

5. SIMULATION RESULTSAND DISCUSSION

The Extended Kalman Filter is employed to provitidal state
estimates at each LTV-MPC optimization. It is asedrthat in
each basin the concentrations of oxygen, ammoriteate
alkalinity, solids, chemical oxygen demand (CODijtefed
COD, and biological oxygen demand (BOD) are meddera
and that the measurements of the inflow rate arftbwn
concentrations are perfect. Gaseous nitrogen igherei
measurable nor observable, but since it does floieimce any
reaction its estimate is not relevant for the psscprediction
[1]. A measurement noise of 2% is introduced, aagrocess
noise is assumed.

No constraints on the outputs, inputs, or statesfemmulated.
It is constant at 520m3/d. In the same diagram itipait

trajectory as computed by the NMPC (LTV-MPC) laj@r the

undisturbed process is depicted. It stays clostdoreference
trajectory. The deviations are caused by the variatin the
state estimates [1].

Model/System | Profiles known in advanced Controller Parameters |

MPC Model Simulation Final Time
Model name Sampling Time go |
| tank model o 200m

A 8
’:j|1_ 0 09 0 ':Jlo_ 1 0
d 0 0 0 g 1
£y 3
iy 0 0 0 ol° [ 0
c D
3 r
’,J 0 I 1 0 0 oo 0 0
7 0 1 0 o 0 0
24 a0
oM 7,

System
Model name Sampling Time
| sytem A 200m

A . B
; r.
’_-J 0 08 025 0 :J o 1 0
0 09 0 i 0 1
4 L
7, o 0 0 0 o 0 0 0
c )
24 -4
- N
f:j 0 ’:/) o

Fig. 4 simulation result of modelling controller usingpléew.

A measurement noise of 2% is introduced, and noga®noise
is assumed. No constraints on the outputs, inputstates are
formulated. The three weighting matrices Q, R, &dvas

formulated. The weighting matrix R, which penalizeput

deviations, is set to zero. The matrices Q andeSsat to the
identity matrix. The inputs u are scaled to valaesund 1[1].

They comprise the permeate flow rate ZP , the mer&da, the

recycle flow rate ZND, and the sludge withdrawal, Z$e

reference trajectory of the permeate flow rate Rhown in
figure. It is constant at 520m3/d. In the same @iagthe input
trajectory as computed by the NMPC (LTV-MPC) laj@r the

undisturbed process is depicted
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Fig.5 a Reference profiles of the DPS layer and LTV-MPC
profiles for the permeate flow ZP for the undistedlprocess.
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Fig.5 b Reference profiles of the DPS layer and LTV-MPC
profiles for the permeate flow ZP for the disturlpedcess.
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Fig. 7 Reference profiles of the DPS layer and obtainedflips
for the effluent concentrations of ammonia cN, Stib) for
the process with no tracking control

The LTV-MPC trajectory of the permeate flow ratesigwn on
the right of Fig3b. During the first day the contation
profiles and the permeate flow rate match the egfeg profiles
closely due to the absence of disturbances. When th
disturbance appears after approximately 1 day,pérmneate
flow is gradually decreased. This increases theradujt
residence time of the system and enables the hiattreat the
increased amount of ammonia and nitrate.

The other input variables are adapted as well ghotvn). As a
result, the profiles of the ammonia and nitrate cemtrations
are forced back to their reference profiles. Themama
concentration profile exhibits a noticeable dewiatfrom the
reference profile when the disturbance occurstheideviation
is small compared to the offset observed in theontrolled
case (Fig.4).

The tracking of the reference trajectories is nepérfect when
perfect knowledge of the states is assumed (nowshorhe
offset observed is hence rather related to thelatgihg state
estimation task than the LTV-MPC controller

CONCLUSIONS

This Non-Linear Model based Predictive Controller
methodology to MBR in sewage water treatment briags
efficient controlling strategy to the entire plany automatic
rescheduling of their set points for unknown infloanditions
together by optimizing set point values.

This set point value should match the bioreactceratponal
strategy that may provide a capable and flexibleragon. This
controller operation is expected to get more effitifiltration
of sewage water which can be reused.
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