IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences
Online ISSN : 1745-1337
Print ISSN : 0916-8508
Special Section on Wideband Systems
Adaptive Control for LED-Based Underwater Wireless Communications Using Visible Light
Xin LIN
Author information
JOURNAL RESTRICTED ACCESS

2017 Volume E100.A Issue 1 Pages 185-193

Details
Abstract

One of the major subjects for marine resources development and information processing is how to realize underwater short-range and large-capacity data transmissions. The acoustic wave is an effective carrier and has been used for underwater data transmissions because it has lower attenuation in seawater than the radio wave, and has average propagation distance of about 10km or more. However, along with the imaging of transmission data, the inherent low speed of the acoustic wave makes it cannot and become an ideal carrier for high-speed and large-capacity communications. On the other hand, visible-light wave with wavelength of 400nm-650nm is an ideal carrier, which has received much attention. Its attractive features are high transparency and low attenuation rate in underwater, easily control the propagation direction and range by the visibility, and high data rate and capacity, making it excellent for application in underwater wireless communications. However, visible-light waves in the seawater have the spectral attenuation characteristics due to different marine environment. Therefore, in this paper an underwater optical wireless communication method with adaptation seawater function is considered for seawater turbidity of the spatio-temporal change. Two crucial components in the underwater optical wireless communication system, the light wavelength and the modulation method are controlled using wavelength- and modulation-adaptation techniques, respectively. The effectiveness of the method of the adaptation wavelength is demonstrated in underwater optical image transmissions.

Content from these authors
© 2017 The Institute of Electronics, Information and Communication Engineers
Previous article Next article
feedback
Top