Acessibilidade / Reportar erro

The clinical use of quantitative EEG in cognitive disorders

A utilização clínica do EEG quantitativo nos transtornos cognitivos

Abstract

The primary diagnosis of most cognitive disorders is clinically based, but the EEG plays a role in evaluating, classifying and following some of these disorders. There is an ongoing debate over routine use of qEEG. Although many findings regarding the clinical use of quantitative EEG are awaiting validation by independent investigators while confirmatory clinical follow-up studies are also needed, qEEG can be cautiously used by a skilled neurophysiologist in cognitive dysfunctions to improve the analysis of background activity, slow/fast focal activity, subtle asymmetries, spikes and waves, as well as in longitudinal follow-ups.

Key words:
quantitative EEG; mental disorder; power spectrum; Coherence; neurodegenerative disorder; brain mapping.

Resumo

O uso clínico do EEG Quantitativo nas doenças cognitivas. O diagnóstico das doenças cognitivas geralmente é clínico mas o EEG é importante como exame auxiliar na avaliação, diagnóstico e classificação de algumas delas. O debate atual refere-se ao uso clínico do EEGq. Embora muitos achados no EEGq ainda aguardem validação, o EEGq pode ser usado cautelosamente em situações específicas e por um neurofisiologista experiente. Nas doenças cognitivas ele pode contribuir na análise da atividade de base, em atividades focais lentas ou rápidas, assimetrias sutís, pontas e ondas e no acompanhamento longitudinal dos pacientes.

Palavras-chave:
EEG quantitativo; transtorno mental; potencia do espectro; Coerência; doenças neurodegenerativas; mapeamento cerebral.

Texto completo disponível apenas em PDF.

Full text available only in PDF format.

References

  • 1
    Kotchoubey B, Lang S, Mezger G, et al. Information processing in severe disorders of consciousness: vegetative state and minimally conscious state. Clin Neurophysiol 2005;116:2441-2453.
  • 2
    Assessment: EEG brain mapping. Report of the American Academy of Neurology, Therapeutics and Technology Assessment Subcommittee. Neurology 1989;39:1100-1101.
  • 3
    Nuwer M. Assessment of digital EEG, quantitative EEG, and EEG brain mapping: Report of the American Academy of Neurology and the American Clinical Neurophysiology Society. Neurology 1997;49:277-292. Current guideline. Reaffirmed on 02/09/2008.
  • 4
    Luccas FJC, Anghinah R, Braga NIO, et al. Recomendações para o Registro/Interpretação do Mapeamento Topográfico do Eletrencefalograma e Potenciais Evocados Parte II: Correlações Clínicas. Arq Neuropsiquiatr 1999;57:132-146.
  • 5
    Nuwer MR. Clinical use of QEEG. Clin Neurophysiol 2003; 114:2225.
  • 6
    Fumiharu T, Neil SC, Benjamin HN. Electroencephalogram characteristics of autonomic arousals during sleep in healthy men. Clin Neurophysiol 2006;117: 2597-2603.
  • 7
    Jennett B, Adams JH, Murray LS, Graham DI. Neuropathology in vegetative and severely disabled patients after head injury. Neurology 2001;56:486-490.
  • 8
    Borthwick CJ, Crossley R. Permanent vegetative state: usefulness and limits of a prognostic definition. NeuroRehabilitation 2004;19:381-389.
  • 9
    Davey MP, Victor JD, Schiff ND. Power spectra and coherence in the EEG of a vegetative patient with severe asymmetric brain damage. Clin Neurophysiol 2000;111:1949-1954.
  • 10
    Leon-Carrion J, Martin-Rodriguez JF, Damas-Lopez J, Barroso y Martin JM, Dominguez-Morales MR. Brain function in the minimally conscious state: A quantitative neurophysiological study. Clin Neurophysiol 2008;119:1506-1514.
  • 11
    John R, Prichep LS. The relevance of qEEG to the evaluation of behavioral disorders and pharmacological interventions. Clin EEG Neurosci 2006;37:135-143.
  • 12
    Furlan AJ, Henry CE, Sweeney PJ, Mitsumoto H. Focal EEG abnormalities in Heidenhains variant of Jakob-Creutzfeldt disease. Arch Neurol 1981;38:312-314.
  • 13
    Wieser HGr, Schindler K, Zumsteg D. EEG in Creutzfeldt-Jakob disease. Clin Neurophysiol 2006;117:935-951.
  • 14
    Jonkman J, Weerd AW, Poortvliet DCJ, et al. Neurometrics in cerebral ischemia and uremic encephalopathy. Brain Topogr 1992;4:277-284.
  • 15
    Doyle OM, Greene BR, Murray DM, Marnane L, Lightbody G, Boylan GB. The effect of frequency band on quantitative EEG measures in neonates with hypoxic-ischaemic encephalopathy. Conf Proc IEEE Eng Med Biol Soc 2007;2007:717-721.
  • 16
    Popkena RJ, Kropvelda D, Oostingb J, Chamuleau RAM. Quantitative Analysis of EEG Power Spectra in Experimental Hepatic Encephalopathy. Neuropsychobiology 1983;9: 235-243.
  • 17
    Kullmann F, Hollerbach S, Lock G, Holstege A, Dierks T, Scholmerich J. Brain electrical activity mapping of EEG for the diagnosis of (sub)clinical hepatic encephalopathy in chronic liver disease. Eur J Gastroent Hepatol 2001;13:513-522.
  • 18
    Piero A, Quero JC, Del Piccolo F, Gatta A,d Schalm SW. Diagnostic tools for the detection of subclinical hepatic encephalopathy: comparison of standard and computerized psychometric tests with spectral-EEG. Metab Brain Dis 1996;11:315-327.
  • 19
    Newton T, Cook I, Kalechstein A, Duran S, Monroy F, Ling W, Leuchter A. Quantitative EEG abnormalities in recently abstinent methamphetamine dependent individuals. Clin Neurophysiol 2003;114;410-415.
  • 20
    Fakhourya T, Abou-Khalila B, Blumenkopf B. EEG changes in intrathecal baclofen overdose: a case report and review of the literature. Electroencephalogr Clin Neurophysiol 1998;107: 339-342.
  • 21
    Korinthenberg R, Scheuring B, Boos J, Niemeyer C. On the origin of EEG-slowing and encephalopathy during induction treatment of acute lymphoblastic leukemia. Med Pediatr Oncol 2002;39:566-572.
  • 22
    Bryan YG. The EEG in Coma. J Clin Neurophysiol 2000;17: 473-485.
  • 23
    Loganovsky KN, Yuryev KL. EEG Patterns in Persons Exposed to Ionizing Radiation as a Result of the Chernobyl Accident. Part 2: Quantitative EEG Analysis in Patients Who Had Acute Radiation Sickness. J Neuropsychiatry Clin Neurosci 2004; 16:70-82.
  • 24
    Jacobson SA, Leuchter AF, Walter DO. Conventional and quantitative EEG in the diagnosis of delirium among the elderly. J Neurol Neurosurg Psychiatry 1993;56:153-158.
  • 25
    Brenner RP M.D. Utility of EEG in Delirium: Past Views and Current Practice. Int Psychogeriatr 1991;3:211-229.
  • 26
    Thomas C, Hestermann U, Walther S, et al. Prolonged activation EEG differentiates dementia with and without delirium in frail elderly patients. J Neurol Neurosurg Psychiatry 2008 Feb 79 119-25.
  • 27
    Hughes JR, John ER: Conventional and quantitative electroencephalography in psychiatry. J Neuropsychiatry Clin Neurosci 1999;11:190-208.
  • 28
    Chabot RJ, di Michele F, Prichep LS: The role of quantitative electroencephalography in child and adolescent psychiatric disorders. Child Adolesc Psychiatr Clin N Am 2005;14:21-53.
  • 29
    The Value of Quantitative Electroencephalography in Clinical Psychiatry: A Report by the Committee on Research of the American Neuropsychiatric Association. J Neuropsychiatry Clin Neurosci 2006;18:460-500.
  • 30
    Klimesch W. EEG alpha and theta oscillations reflect cognitive and memory performance: a review and analysis. Brain Res Rev 1999;29:169-195.
  • 31
    Jausovec N, Jausovec K. Spatiotemporal brain activity related to intelligence: a low resolution brain electromagnetic tomography study. Brain Res Cogn Brain Res 2003;16:267-272.
  • 32
    Marosi E, Rodriguez H, Harmony T, et al. Broad band spectral parameters correlated with different I.Q. measurements. Int J Neurosci 1999;97:17-27.
  • 33
    Anokhin AP, Lutzenberger W, Birbaumer N. Spatiotemporal organization of brain dynamics and intelligence: an EEG study in adolescents. Int J Psychophysiol 1999;33:259-273.
  • 34
    Lutzenberger W, Birbaumer N, Flor H, Rockstroh B, Elbert T. Dimensional analysis of the human EEG and intelligence. Neurosci Lett 1992;143:10-14.
  • 35
    Neubauer AC, Grabner RH, Freudenthaler HH, Beckmann JF, Guthke J. Intelligence and individual differences in becoming neurally efficient. Acta Psychol (Amsterdam) 2004; 116:55-74.
  • 36
    Barry RJ, Clarke AR, McCarthy R, Selikowitz M. EEG coherence attention-deficit/hyperactivity disorder: a comparative study DSM-IV types. Clin Neurophysiol 2002;113:579-85.
  • 37
    Martin-Loeches M, Munoz-Ruata J, Martinez-Lebrusant L, Gomez-Jari G. Electrophysiology and intelligence: the electrophysiology of intellectual functions in intellectual disability. J Intellect Disabil Res 2001;45:63-75.
  • 38
    Schmid RG, Tirsch WS, Scherb H. Correlation between spectral EEG parameters and intelligence test variables in school-age children. Clin Neurophysiol 2002;113:1647-56.
  • 39
    Posthuma D, Neale MC, Boomsma DI, de Geus EJ. Are smarter brains running faster? Heritability of alpha peak frequency, IQ, and their interrelation Behav Genet 2001;31:567-79.
  • 40
    Jausovec N, Jausovec K. Differences in EEG current density related to intelligence. Brain Res Cogn Brain Res 2001;12:55-60.
  • 41
    Becker J, Velasco M, Harmony T. Electroencephalographic characteristics of children with learning disabilities. Clin Electroencephalogr 1987;18:93-101.
  • 42
    Kaye H, John ER, Ahn H, et al. Neurometric evaluation of learning disabled children. Int J Neurosci 1981;13:15-25.
  • 43
    Gasser T, Rousson V, Gasser US. EEG Power and Coherence in Children with Educational Problems. J Clin Neurophysiol 2003;20:273-282.
  • 44
    Thatchera RW, Northa D, Biver C. EEG and intelligence: Relations between EEG coherence, EEG phase delay and power. Clin Neurophysiol 2005;116:2129-2141.
  • 45
    Silberstein RB, Song J, Nunez PL, Park W. Dynamic sculpting of brain functional connectivity is correlated with performance. Brain Topogr 2004;16:249-54.
  • 46
    Klimesch W, Doppelmayr M, Rohm D, Pollhuber D, Stadler W. Simultaneous desynchronization and synchronization of different alpha responses in the human electroencephalograph: a neglected paradox? Neurosci Lett 2000;284:97-100.
  • 47
    Klimesch W, Schack B, Schabus M, Doppelmayr M, Gruber M, Saunseng R. Phase-locked alpha and theta oscillatins generate the P1-N1 complex and are related to memory performance. Brain Res Cogn 2004;19:302-16.
  • 48
    John ER. The neurophysics of consciousness. Brain Res Rev 2002;39:1-28.
  • 49
    American Academy of Pediatrics. Clinical practice guideline: diagnosis and evaluation of the child with attention-deficit/hyperactivity disorder. Pediatrics 2000;105:1158-1170.
  • 50
    Bresnahan SM, Anderson JW, Barry RJ. Age related changes in quantitative EEG in attention deficit hyperactivity disorder. Biol Psychiatry 1999;46:1690-1697.
  • 51
    Bresnahan SM, Barry RJ. Specificity of quantitative EEG analysis in adults with attention deficit hyperactivity disorder. Psychiatry Res 2002;112:133-144.
  • 52
    Snyder SM, Hall JR. A meta-analysis of quantitative EEG power associated with attention-deficit hyperactivity disorder. J Clin Neurophysiol 2006;23:440-455.
  • 53
    Coutin-Churchman P, Anez Y, Uzcategui M, et al. Quantitative spectral analysis of EEG in psychiatry revisited: drawing signs out of numbers in a clinical setting. Clin Neurophysiol 2003;114:2294-2306.
  • 54
    Holschneider DP, Leuchter AF. Clin Neurophysiol using electroencephalography in geriatric psychiatry: neurobiologic implications and clinical utility. J Geriatr Psychiatr Neurol 1999;12:150-164 .
  • 55
    Hunter AM, Cook IA, Leuchter AF. The promise of the quantitative electroencephalogram as a predictor of antidepressant treatment outcomes in major depressive disorder. Psychiatr Clin North Am 2007;30:105-124.
  • 56
    Spronk D, Arns M, Bootsma A, van Ruth R, Fitzgerald PB. Long-term effects of left frontal rTMS on EEG and ERPs in patients with depression. Clin EEG Neurosci 2008l;39: 118-124.
  • 57
    Pozzi D, Golimstock A, Petracchi M, García H, Starkstein S. Quantified electroencephalographic changes in depressed patients with and without dementia. Biol Psychiatry 1995; 38:677-683.
  • 58
    Morgan ML, Cook IA, Rapkin AJ, Leuchter AF. Neurophysiologic changes during estrogen augmentation in perimenopausal depression. Maturitas 2007;56:54-60.
  • 59
    Morgan ML, Witte EA, Cook IA, Leuchter AF, Abrams M, Siegman B. Influence of age, gender, health status, and depression on quantitative EEG. Neuropsychobiology 2005;52:71-76.
  • 60
    Koek RJ, Yerevanian BI, Tachiki KH, Smith JC, Alcock J, Kopelowicz A. Hemispheric asymmetry in depression and mania. A longitudinal qEEG study in bipolar disorder. J Affect Disord 1999;53:109-122.
  • 61
    Leuchter AF, Cook IA, Uijtdehaage SH, et al. Brain structure and function and the outcomes of treatment for depression. J Clin Psychiatry 1997;58(Suppl 16):22-31.
  • 62
    Lieber AL. Diagnosis and subtyping of depressive disorders by quantitative electroencephalography: II. Interhemispheric measures are abnormal in major depressives and frequency analysis may discriminate certain subtypes. Hillside J Clin Psychiatry 1988;10:84-97.
  • 63
    Kwon JS, Youn T, Jung HY. Right hemisphere abnormalities in major depression: quantitative electroencephalographic findings before and after treatment. J Affect Disord 1996;40:169-173.
  • 64
    Pozzi D, Golimstock A, Migliorelli R, Tesón A, García H, Starkstein S. Quantified electroencephalographic correlates of depression in Alzheimer's disease. Biol Psychiatry 1993; 34:386-391.
  • 65
    Lieber AL, Prichep LS. Diagnosis and subtyping of depressive disorders by quantitative electroencephalography: I. Discriminant analysis of selected variables in untreated depressives. Hillside J Clin Psychiatry 1988;10:71-83.
  • 66
    Lieber AL, Newbury ND. Diagnosis and subtyping of depressive disorders by quantitative electroencephalography: III. Discriminating unipolar from bipolar depression. Hillside J Clin Psychiatry 1988;10:165-72.
  • 67
    Lieber AL, Newbury ND. Diagnosis and subtyping of depressive disorders by quantitative electroencephalography: IV. Discriminating subtypes of unipolar depression. Hillside J Clin Psychiatry 1988;10:173-82.
  • 68
    Kenneth J. Continuous EEG Monitoring in the Neuroscience Intensive Care Unit and Emergency Department. Journal of Clinical Neurophysiology. Intensive Care EEG Monitoring 1999;16:14-39.
  • 69
    Papadelis C, Maglaveras N, Kourtidou-Papadeli C, et al. Quantitative multichannel EEG measure predicting the optimal weaning from ventilator in ICU patients with acute respiratory failure. Clin Neurophysiol 2006;117: 752-770.
  • 70
    Scheuer ML and Wilson SB. Data Analysis for Continuous EEG Monitoring in the ICU: Seeing the Forest and the Trees. J Clin Neurophysiol 2004;21:353-378.
  • 71
    Nuwer MR, Comi G, Emerson R, Fuglsang-Frederiksen J, Guérit M, Hinrichs H, Ikeda A, Luccas FJC, Rappelsberger P. IFCN standards for digital recording of clinical EEG. Electroencephalogr Clin Neurophysiol 1998;106:259-261.
  • 72
    Klass DW, Brenner RP. Electroencephalography of the elderly. J Clin Neurophysiol 1995;12:116-131.
  • 73
    Sandmann MC, Piana ER, Sousa DS, Bittencourt PRM. (1996) Eletrencefalograma digital com mapeamento em demência de Alzheimer e doença de Parkinson. Arq Neuropsiquiatr 1996;54:50-56.
  • 74
    Lehmann, D. Multichannel topography of human alpha EEG fields. Electroenceph Clin Neurophysiol 1971; 31:439-449.
  • 75
    Duffy FH, Burchfiel JL, Lombroso CT. Brain electrical activity mapping (BEAM): A method for extending the clinical utility of EEG and evoked potential data. Ann Neurol 1979;5:309-321.
  • 76
    Loeches MM, Gil P, Jimenez F, et al. Topographic maps of brain electrical activity in primary degenerative dementia of Alzheimer type and multi-infarct dementia. Biol Psych 1991; 29:211-223.
  • 77
    Saletu B, Paulus E, Grunbergerer J. Correlation maps: on the relation of electroencephalographic slow wave activity to computerized tomography and psycopathometric measurements in dementia. In: Maurer K. Imaging of Brain in Psychiatry and Related Fieldsed. Berlin: Springer-Verlag; 1993; 263-265.
  • 78
    Pucci E, Belardinelli N, Cacchiò G, Signorino M, Angeleri F. EEG power spectrum differences in early and late onset forms of Alzheimer's disease. Clin Neurophysiol 1999;110:621-631.
  • 79
    Dierks T, Perisic I, Frölich L, Ihl R, Maurer K. Topography of the qEEG in dementia of Alzheimer type: relation to severity of dementia. Psych Research 1991;40:181-194.
  • 80
    Leuchter AF, Cook IA, Newton TF, et al. Regional differences in brain electrical activity in dementia: use of spectral power and spectral ratio measures. Electroencephalogr Clin Neurophysiol 1993;87:385-393.
  • 81
    Anderer P, Saletu B, Klöppel B, Semlitsch HV, Werner H. Discrimination between demented patients and normals based on topographic EEG slow wave activity: comparison between z statistics, discriminant analysis and artificial neural network classifiers. Electroencephalogr clin Neurophysiol 1994;91: 108-117.
  • 82
    Claus JJ, Strijers RLM, Jonkman EJ, et al. The diagnostic value of EEG in mild senile alzheimer's disease. Clin Neurophysiol 1999;110:825-832.
  • 83
    Nielsen T, Montplaisir J, Lassonde M. Decreased Interhemispheric EEG Coherence during sleep in agenesis of the corpus callosum. Eur Neurol 1993;33:173-176.
  • 84
    Leuchter AF, Spar JE, Walter DO, Weiner H. Electroencephalographic spectra and coherence in the diagnosis of Alzheimer"s-type and multi-infarct dementia. Arch Gen Psychiatry 1987;44:993-998.
  • 85
    Besthorn C, Zerfass R, Geiger-Kabisch C, et al. Discrimination of AD and normal aging by EEG data. Electroencephalogr. Clin Neurophysiol 1997;103:241-248.
  • 86
    Locatelli T, Cursi M, Liberati D, Franceschi M, Comi G. EEG coherence in Alzheimer's disease. Electroencephalogr. Clin Neurophysiol 1998;106:229-237.
  • 87
    Projeto Diretrizes - Associação Médica Brasileira e Conselho Federal de Medicina. Fonseca LC. Demência - Eletroencefalograma e eletroencefalograma quantitativo. Final Preparation: May 15, 2008. Available at URL address:http://www.projetodiretrizes.org.br/projeto_diretrizes/035.pdf
    » http://www.projetodiretrizes.org.br/projeto_diretrizes/035.pdf
  • 88
    U.S. Food and Drug Administration (FDA) (Centers for Devices and Radiological Health. NeuroGuide Analysis System (NAS). Updated Oct 2005. Available at URL address: http://www.fda.gov.
    » http://www.fda.gov.

Appendix

Strength of recommendation ratings Type A. Strong positive recommendation, based on Class I evidence, or overwhelming Class II evidence. Type B. Positive recommendation, based on Class II evidence. Type C. Positive recommendation, based on strong consensus of Class III evidence. Type D. Negative recommendation, based on inconclusive or conflicting Class II evidence. Type E. Negative recommendation, based on evidence of ineffectiveness or lack of efficacy. Standards Generally accepted principles for patient management that reflect a high degree of clinical certainty (i.e., based on Class I evidence or, when circumstances preclude randomized clinical trials, overwhelming evidence from Class II studies that directly address the question at hand, or from decision-analysis that directly addresses all the issues). Guidelines Recommendations for patient management that may identify a particular strategy or range of management strategies that reflect moderate clinical certainty (i.e., based on Class II evidence that directly addresses the issue, decision analysis that directly addresses the issue, or strong consensus of Class III evidence). Practice options or advisories Other strategies for patient management for which there is some favorable evidence, but for which the community still considers this an option to be decided upon by individual practitioners. Practice parameters Results, in the form of one or more specific recommendations, from a scientifically-based analysis of a specific clinical problem. Quality of evidence ratings Class I. Evidence provided by one or more well-designed, prospective, blinded, controlled clinical studies. Class II. Evidence provided by one or more well-designed clinical study such as case control, cohort studies, etc. Class III. Evidence provided by expert opinion, non-randomized historical controls or case reports of one or more patients3.

Publication Dates

  • Publication in this collection
    Jul-Sep 2009

History

  • Received
    05 June 2009
  • Accepted
    19 Aug 2009
Academia Brasileira de Neurologia, Departamento de Neurologia Cognitiva e Envelhecimento R. Vergueiro, 1353 sl.1404 - Ed. Top Towers Offices, Torre Norte, São Paulo, SP, Brazil, CEP 04101-000, Tel.: +55 11 5084-9463 | +55 11 5083-3876 - São Paulo - SP - Brazil
E-mail: revistadementia@abneuro.org.br | demneuropsy@uol.com.br