Skip to main content
Log in

Proposed classification of HPFRC composites based on their tensile response

  • Original Article
  • Published:
Materials and Structures Aims and scope Submit manuscript

Abstract

The tensile response of fiber reinforced cement (FRC) composites can be generally classified in two distinct categories depending on their behavior after first cracking, namely, either strain-hardening or strain-softening. Within the strain-softening category, one can distinguish between deflection-hardening and deflection-softening behavior. Several standard tests (ASTM, JCI, RILEM) are available to assess the characteristics of mostly strain-softening FRC composites through bending tests, but no standard test is currently available to characterize strain-hardening response in tension. Such composites have been described as high performance FRC or HPFRC composites. In this paper a proposal is put forth to characterize the response of strain-hardening FRC composites based on the results of direct tensile tests. The classification is based on several parameters which include a minimum value of elastic modulus, a minimum value of peak strain after first cracking, and the tensile strength level. While one of the key obstacles remains, that is, to develop a realistic and meaningful tensile test standard, some requirements on minimum specimen size, fiber size and aggregate size are also suggested.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Naaman AE, Reinhardt HW (2003) High performance fiber reinforced cement composites, HPFRCC 4: International RILEM workshop, summary report, Materials and Structures 36:710–712.

  2. Naaman AE, Reinhardt HW (2003) Setting the stage: Toward performance based classification of frc composites, in Naaman AE, Reinhardt HW (eds.), high performance fiber reinforced cement composites (HPFRCC-4), (RILEM Publications, Pro.) pp. 1–4.

  3. Naaman AE, Reinhardt HW (2004) Fiber reinforced concrete: Current needs for structural implementation, proceedings of us-european workshop on advanced fiber reinforced concrete, Plizzari GA, di Prisco M (eds.) (Bergamo, Italy).

  4. Chandrangsu K, Naaman AE (2003) Comparison of Tensile and Bending Response of Three High Performance Fiber Reinforced Cement Composites, in Naaman AE, Reinhardt HW (eds.), High Performance Fiber Reinforced Cement Composites (HPFRCC-4), (RILEM Publications, Pro.) pp. 259–274.

  5. Naaman AE, Reinhardt HW (1996) Co-Editors, high performance fiber reinforced cement composites: HPFRCC 2, RILEM, No. 31, E. & FN Spon, London, 505 pages.

  6. Naaman AE (2003) Strain hardening and deflection hardening fiber reinforced cement composites, in Naaman AE, Reinhardt HW (eds.), High Performance Fiber Reinforced Cement Composites (HPFRCC-4), (RILEM Publications, Pro.) pp. 95–113.

  7. Balaguru PN, Shah SP (1992) Fiber reinforced cement composites (McGraw Hill, New York).

    Google Scholar 

  8. Bentur A, Mindess S (1990) Fiber reinforced cementitious composites (Elsevier Applied Science, UK).

    Google Scholar 

  9. Chanvillard G, Rigaud S (2003) “Complete characterization of tensile properties of Ductal UHPFRC according to the French Recommendations,” in High Performance Fiber Reinforced Cement Composites (HPFRCC4), Rilem Proceedings PRO 30, Naaman AE, Reinhardt HW (eds.), pp. 21–34.

  10. Johnston CD (2001) Fiber reinforced cements and concretes (gordon and Beach Science Publishers, Australia).

    Google Scholar 

  11. Naaman AE, Reinhardt HW Editors (2003) High Performance Fiber Reinforced Cement Composites — HPFRCC 4, RILEM Proc., PRO 30, RILEM Publications, S.A.R.L., Cachan, France, 546 pages.

  12. Reinhardt HW, Naaman AE (1999) High performance fiber reinforced Cement Composites – HPFRCC 3, RILEM Proceedings, PRO 6, RILEM Publications S.A.R.L., Cachan, France, 666 pages.

  13. Reinhardt HW, Naaman AE Co-Editors (1992) High performance fiber reinforced cement composites, RILEM Publications 15, E. & FN Spon, London, 565 pages.

  14. Rossi P, (1998) Les Betons de Fibres Metalliques, in French, Presses de L' ENPC, France.

  15. Stang H, Li VC (2004) Classification of fiber reinforced cementitious materials for structural applications, in Fiber Reinforced Concrete – BEFIB 2004, edited by di Prisco M, Felicetti R, Plizzari GA (eds.), RILEM Proceedings PRO 39:197–218.

  16. RILEM TC TDF-162 (2001) Test and design methods for steel fiber reinforced concrete. Recmmendations for uniaxial tension test. Materials and Structures, 34:3–6.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Naaman, A.E., Reinhardt, H.W. Proposed classification of HPFRC composites based on their tensile response. Mater Struct 39, 547–555 (2006). https://doi.org/10.1617/s11527-006-9103-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1617/s11527-006-9103-2

Keywords

Navigation