Skip to main content
Log in

Meso-structural study of concrete fracture using interface elements. I: numerical model and tensile behavior

  • Original Article
  • Published:
Materials and Structures Aims and scope Submit manuscript

Abstract

A recently developed FE-based mesostructural model for the mechanical behavior of heterogeneous quasi-brittle materials is used systematically to analyze concrete specimens in 2D. The numerical model is based on the use of zero-thickness interface elements equipped with a normal-shear traction-separation constitutive law representing non-linear fracture, which may be considered a mixed-mode generalization of Hillerborg’s “Fictitious Crack Model.” Specimens with 4 × 4 and 6 × 6 arrays of aggregates are discretized into finite elements. Interface elements are inserted along the main lines in the mesh, representing potential crack lines. The calculations presented in this paper consist of uniaxial tension loading, and the continuum elements themselves are assumed to behave as linear elastic. In this way, the influence of various aspects of the heterogeneous geometry and interface parameters on the overall specimen response has been investigated. These aspects are aggregate volume fraction, type of arrangement and geometry, interface layout, and values of the crack model parameters chosen for both the aggregate-aggregate and matrix-aggregate interfaces. The results show a good qualitative agreement with experimental observations and illustrate the capabilities of the model. In the companion second part of the paper, the model is used to represent other loading states such as uniaxial compression, Brazilian test, or biaxial loading.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  1. Roelfstra PE, Sadouki H, Wittmann FH (1985) Le beton numerique. Mater Struct 18:309–317

    Article  Google Scholar 

  2. Stankowski T (1990) Numerical simulation of progressive failure in particle composites. Doctoral Thesis, Dept. CEAE, University of Colorado, Boulder, CO 80309-0428, USA

  3. Vonk R (1992) Softening of concrete loaded in compression. Ph.D. thesis, Technische Universiteit Eindhoven, Postbus 513, 5600 MB Eindhoven, The Netherlands

  4. Wang J, Huet C (1993) A numerical model for studying the influences of pre-existing microcracks and granular character on the fracture of concrete materials and structures. In: Huet C (ed) Micromechanics of concrete and cementitious composites. Presses Politechniques et Universitaires Romandes, Lausanne, Switzerland, p 229

    Google Scholar 

  5. Schlangen E, van Mier J (1992) Micromechanical analysis of fracture of concrete. Int J Damage Mech 1:435

    Article  Google Scholar 

  6. Schlangen E (1993) Experimental and numerical analysis of fracture processes in concrete. Ph.D. thesis, T. U. Delft, The Netherlands

  7. Schlangen E, Garboczi E (1996) New method for simulating fracture using an elastically uniform random geometry lattice. Int J Eng Sci 34:1131

    Article  MATH  Google Scholar 

  8. Zubelewicz A, Bažant ZP (1987) Interface element modeling of fracture in aggregate composites. ASCE J Eng Mech 113:1619–1630

    Article  Google Scholar 

  9. Bažant ZP, Tabbara M, Kazemi M, Pijaudier-Cabot G (1990) Random particle model for fracture or fiber composites. ASCE J Eng Mech 116:1686–1705

    Article  Google Scholar 

  10. Jirásek M, Bažant ZP (1995) Particle model for fracture and statistical micro-macro correlation of material constants. In: Wittman F (ed) Fracture mechanics of concrete structures (FraMCoS 2). Aedificatio Publishers, Freiburg, Zurich, Switzerland

    Google Scholar 

  11. Bolander JE, Saito S (1998) Fracture analysis using spring networks with random geometry. Eng Fract Mech 61(5/6):569–591

    Article  Google Scholar 

  12. Bolander JE, Hong GS, Yoshitake K (2000) Structural concrete analysis using rigid-body-spring networks. J Comp Aided Civil Infrastruct Eng 15:120–133

    Article  Google Scholar 

  13. Cusatis G, Bažant ZP, Cedolin L (2003) Confinement-shear lattice model for concrete damage in tension and compression: I. Theory. ASCE J Eng Mech 129(12):1439–1448

    Article  Google Scholar 

  14. Cusatis G, Bažant ZP, Cedolin L (2003) Confinement-shear lattice model for concrete damage in tension and compression: II. Computation and validation. ASCE J Eng Mech 129(12):1449–1458

    Article  Google Scholar 

  15. Hillerborg A, Modéer M, Petersson PE (1976) Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements. Cement Concrete Res 6(6):773–781

    Article  Google Scholar 

  16. Rots JG (1988) Computational modelling of concrete fracture. Ph.D. thesis, Delft University of Technology, Delft, The Netherlands

  17. Camacho GT, Ortiz M (1996) Computational modelling of impact damage in brittle materials. Int J Solids Struct 33(20–22):2899–2938

    Article  MATH  Google Scholar 

  18. Carol I, López CM (1999) Failure analysis of quasi-brittle materials using interface elements. In: Pijaudier-Cabot G, Bittnar Z, Gérard B (eds) Mechanics of quasi-brittle materials and structures, Hermes Science Publications, 75004 Paris, pp 289–305

  19. Gens A, Carol I, Alonso E (1988) An interface element formulation for the analysis of soil-reinforcement interaction. Comput Geotechnics 7:133–151

    Article  Google Scholar 

  20. Rots JG, Schellekens JCJ (1990) Interface elements in concrete mechanics. In: Bicanic N, Mang H (eds) Computer aided analysis and design of concrete structures (SCI-C). Pineridge {P} press, Swansea, pp 909–918

    Google Scholar 

  21. López CM (1999) Microstructural analysis of concrete fracture using interface elements. Application to various concretes (In Spanish). Doctoral Thesis. Universitat Politecnica de Catalunya. ETSECCCP-UPC, E-08034 Barcelona, Spain

  22. López CM, Carol I, Aguado A (2000) Microstructural analysis of concrete fracture using interface elements. In: Oñate E et al (eds) European congress on computational methods in applied sciences and engineering-ECCOMAS 2000. CIMNE, Barcelona, Spain (in CD ROM)

  23. Carol I, López CM, Roa O (2001) Micromechanical analysis of quasi-brittle materials using fracture-based interface elements. Int J Numer Methods Eng 52:193–215

    Article  Google Scholar 

  24. Caballero A (2005) 3D meso-mechanical numerical analysis of concrete using interface elements. Ph.D. thesis, ETSECCPB-UPC, E-08034 Barcelona, Spain

  25. Caballero A, López CM, Carol I (2006) 3D meso-structural analysis of concrete specimens under uniaxial tension. Comput Methods Appl Mech Eng 195(52):7182–7195

    Article  MATH  Google Scholar 

  26. Caballero A, Carol I, López CM (2006) A meso-level approach to the 3D numerical analysis of cracking and fracture of concrete materials. Fatigue Fract Eng Mater Struct 29:979–991

    Article  Google Scholar 

  27. Carol I, Prat PC (1990) A statically constrained microplane for the smeared analysis of concrete cracking. In: Bicanic N, Mang H (eds) Computer aided analysis and design of concrete structures, Pineridge Press, Swansea, pp 919–930

  28. Carol I, Prat PC (1995) A multicrack model based on the theory of multisurface plasticity and two fracture energies. In: Owen DRJ, Oñate E, Hinton E (eds) Computational plasticity (COMPLAS IV). Pineridge Press, Barcelona, pp 1583–1594

    Google Scholar 

  29. Carol I, Prat PC, López CM (1997) A normal/shear cracking model. Application to discrete crack analysis. J Eng Mech 123(8):765–773

    Article  Google Scholar 

  30. Hassanzadeh M (1990) Determination of fracture zone properties in mixed mode I and II. Eng Fract Mech 35(4/5):845–853

    Article  Google Scholar 

  31. Prat P, Gens A, Carol I, Ledesma A, Gili J (1993) DRAC: a computer software for the analysis of rock mechanics problems. In: Liu H (ed) Application of computer methods in rock mechanics, 2, Shaanxi Science and Technology Press, Xian, China, pp 1361–1368

  32. Marques J (1984) Stress computation in elastoplasticity. Eng Comput 1:42–51

    Article  Google Scholar 

  33. Crisfield M (1991) Non-linear finite element analysis of solids and structures, vol 1. Wiley, New York, EEUU

    Google Scholar 

  34. Hordijk DA (1992) Tensile and tensile fatigue behaviour of concrete; experiments, modeling and analyses. HERON, vol 37. Stevin Laboratory and TNO Research, Delft, The Netherlands

    Google Scholar 

  35. Petersson PE (1981) Crack growth and development of fracture zones in plain concrete and similar materials. Report TVBM-1006, Division of Building Materials, Lund Institute of Technology, Lund, Suecia

  36. Wolinski S, Hordijk DA, Reinhardt HW, Cornelissen HAW (1987) Influence of aggregate size on fracture mechanics parameters of concrete. Int J Cement Comp Lightweight Concrete 9(2):95–103

    Article  Google Scholar 

  37. Wittmann FH, Rokugo K, Brühwiler E, Mihashi H, Simonin P (1988) Fracture energy and strain softening of concrete as determined by means of compact tension specimens. Mater Struct Matériaux et Constructions 21:21–32

    Google Scholar 

  38. Hordijk DA (1991) Local approach to fatigue of concrete. Ph.D. thesis, Delft University of Technology, Delft, The Netherlands

  39. van Mier JGM (1997) Fracture processes of concrete. CRC Press, Boca Raton

    Google Scholar 

  40. Nomura N, Mihashi H, Izumi M (1991) Properties of fracture process zone and tension softening behaviour of concrete. In: van Mier JGM, Rots JG, Bakker A (eds) Fracture processes in concrete, rock and ceramics. Chapman & Hall/E&FN Spon, London/New York, p 51

    Google Scholar 

  41. Feng N, Ji X, Zhuang Q, Ding J (1995) Effect of concrete materials on fracture performance. In: Wittmann FH (ed) Fracture mechanics of concrete structures. Proceedings of the FRAMCOS-2, Aedificatio Publishers, D-79104, Freiburg, pp 119–124

  42. Bažant ZP, Oh B (1983) Microplane model for fracture analysis of concrete structures. In: U.S. Air Force Academy (ed) Proceedings of the symposium on the interaction of non-nuclear munitions with structures, Colorado Springs, pp 49–55

Download references

Acknowledgements

This research has been supported by grants MAT2003-02481 and BIA2006-12717 funded by MEC (Madrid), and 80015/A04 funded by MFOM (Madrid). The first author also wishes to thank MEC for the “Ramon y Cajal” research position received during the period 2001–2006.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos M. López.

Rights and permissions

Reprints and permissions

About this article

Cite this article

López, C.M., Carol, I. & Aguado, A. Meso-structural study of concrete fracture using interface elements. I: numerical model and tensile behavior. Mater Struct 41, 583–599 (2008). https://doi.org/10.1617/s11527-007-9314-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1617/s11527-007-9314-1

Keywords

Navigation