Skip to main content
Log in

Chemical changes and phase analysis of OPC pastes carbonated at different CO2 concentrations

  • Original Article
  • Published:
Materials and Structures Aims and scope Submit manuscript

Abstract

Chemical changes and phase analysis of OPC pastes exposed to accelerated carbonation using different concentrations of CO2 (3%, 10% and 100%) have been undertaken and compared with those of natural carbonation (≅0.03%). 29Si Magic Angle Spinning-Nuclear Magnetic Resonance (29Si M.A.S-N.M.R), Thermogravimetric analyses (TG) and X-Ray Diffraction (XRD) have been used for characterisation. The carbonation of the samples has resulted in a progressive polymerisation of CSH that leads to formation of a Ca-modified silica gel and calcium carbonate. The carbonation of CSH and portlandite occurs simultaneously and the polymerisation of the CSH after carbonation increases with the increase in concentration of CO2. When ≅0.03% and 3% CO2 are used, CSH gel with a lower Ca/Si than that of the uncarbonated sample, and quite similar for both samples remained. When carbonating at 10% and 100% of CO2, the CSH gel completely disappears. For every condition, a polymerised Ca-modified silica gel is formed, as a result of the decalcification of the CSH. From these results it can be deduced that among the different concentrations of CO2 tested, carbonation up to a 3% of CO2, (that is to say, by a factor of 100) results in a microstructure much more similar to those corresponding to natural carbonation at ≅0.03% CO2 than those at the 10% and 100% concentrations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Tokyay M (1997) Cement systems in aggressive environments. Cimento Beton Dunyasi 2(8):13–19

    Google Scholar 

  2. Suzuki K, Nishikawa T, Hayashi T (1989) Carbonation of calcium silicate hydrates (C–S–H) having different calcium/silicon ratios. Semento, Konkurito Ronbunshu 43:18–23

  3. Shirakawa T, Shimazoe Y, Aso M et al (1999) Prediction of carbonation progress of cement mortar based on diffusion equation of carbon dioxide. Semento, Konkurito Ronbunshu 839 (English)

  4. Richardson IG, Groves GW, Brough AR et al (1993) The carbonation of OPC and OPC/silica fume hardened cement pastes in air under conditions of fixed humidity. Adv Cem Res 5(18):81–86

    Google Scholar 

  5. Rahman AA, Glasser FP (1989) Comparative studies of the carbonation of hydrated cements. Adv Cem Res 2(6):49–54

    Google Scholar 

  6. Reardon EJ, James BR, Abouchar J (1989) High pressure carbonation of cementitious grout. Cem Concr Res 19(3):385–399

    Article  Google Scholar 

  7. Nishikawa T, Suzuki K (1991) Carbonation of calcium silicate hydrate. Semento Konkuriito 528:32–39

    Google Scholar 

  8. Nishikawa T, Suzuki K (1994) Chemical conversion of C–S–H in concrete. Cem Concr Res 24(1):176–182

    Article  Google Scholar 

  9. Massazza F (1999) Pozzolanas and durability of concrete. Cimento Beton Dunyasi 3(21):19–44

    Google Scholar 

  10. Yousuf M, Mollah A, Hess TR, Tsai YN et al (1993) An FTIR and XPS investigation of the effects of carbonation on the solidification/stabilization of cement based systems—portland Type V with zinc. Cem Concr Res 23(4):773–774

    Article  Google Scholar 

  11. Kobayashi K, Suzuki K, Uno Y (1994) Carbonation of concrete structures and decomposition of C–S–H. Cem Concr Res 24(1):55–61

    Article  Google Scholar 

  12. Kim S, Taguchi H, Ohba Y et al (1995) Carbonation of calcium hydroxide and calcium silicate hydrates. Muki Materiaru 2(254):18–25

    Google Scholar 

  13. Groves GW, Brough A, Richardson IG et al (1991) Progressive changes in the structure of hardened C3S cement pastes due to carbonation. J Am Ceram Soc 74(11):2891–2896

    Article  Google Scholar 

  14. Goto S, Nakamura A, Ioku K (1998) Hardening of calcium silicate compounds by carbonation. Muki Materiaru 5(272):22–27

    Google Scholar 

  15. Groves GW, Rodway DI, Richardson IG (1990) The carbonation of hardened cement pastes. Adv Cem Res 3(11):117–125

    Google Scholar 

  16. Funato M, Hashimoto M, Kuramochi S (1991) Study on quantitative analysis of silica gel formed by carbonation of cement hydrates. Semento, Konkurito Ronbunshu 45:252–257

    Google Scholar 

  17. Chaussadent T, Baroghel-Bouny V, Hornain H et al (2000) Effect of water–cement ratio of cement pastes on microstructural characteristics related to carbonation process. Am Concr Inst, SP 192 [Durability of concrete, vol 1]:523–537

  18. Claisse PA, El-Sayad H, Shaaban IG (1999) Permeability and pore volume of carbonated concrete. ACI Mater J 96(3):378–381

    Google Scholar 

  19. Dunster AM (1989) An investigation of the carbonation of cement paste using trimethylsilylation. Adv Cem Res 2(7):99–106

    Google Scholar 

  20. Brough AR, Dobson CM, Richardson IG et al (1994) Application of selective 29Si isotopic enrichment to studies of the structure of calcium silicate hydrate (C–S–H) gels. J Am Ceram Soc 77(2):593–596

    Article  Google Scholar 

  21. Bier TA, Kropp J, Hilsdorf HK (1989) The formation of silica gel during carbonation of cementitious systems containing slag cements. Am Concr Inst SP(114):1413–1428

    Google Scholar 

  22. Sergi G (1986) Corrosion of steel in concrete: cement matrix variables. PhD thesis, Aston University

  23. Verbeck G (1958) Carbonation of hydrated portland cement. PCA Bulletin 87:17–36

    Google Scholar 

  24. Alekseev SN, Rozental NK (1976) Corrosion vonstahlbeton in aggressive industrielft, Beton, vol 65

  25. Gonzalez JA, Algaba S, Andrade C (1980) Corrosion of reinforcing bars in carbonated concrete. Br Corros J 15(3):135–139

    Google Scholar 

  26. Gonzalez JA, Andrade C (1980) Relaciones cuantitativas entre la carbonatación y la corrosión de armaduras. Corrosion y protección Feb:15–24

    Google Scholar 

  27. Alonso C, Andrade C (1987) Efecto que el tipo de cemento y la dosificación del mortero ejercen en la velocidad de corrosión de armaduras embebidas en mortero carbonatado. Mat De Construc 37(205):5–15

    Google Scholar 

  28. Gonzalez JA, Andrade C, Alonso C (1983) Corrosion rate of reinforcements during accelerated carbonation of mortar made with different types of cement. In: Crane AP (ed) Corrosion of reinforcement in concrete construction, vol Chapter 11, pp 159–174

  29. Alonso C, Andrade C, Gonzalez JA (1988) Relation between resistivity and corrosion rate of reinforcements in carbonated mortar made with several cement types. Cem Concr Res 18(5):687–698

    Article  Google Scholar 

  30. Pihlajavaara SE (1968) Same results of the effect of carbonation on the porosity and pore size distribution of cement paste. Mat et Cons 1(6):521–526

    Article  Google Scholar 

  31. Taylor HFW (1990) Cement chemistry. Academic Press, London

    Google Scholar 

  32. Pihlajavaara SE, Pihlman E (1974) Effects of carbonation on microstructural properties of cement stone. Cem Concr Res 4(2):149–154

    Article  Google Scholar 

  33. Johannesson B, Utgenannt P (2001) Microstructural changes caused by carbonation of cement mortar. Cem Concr Res 31(6):925–931

    Article  Google Scholar 

  34. Ngala VT, Page CL (1997) Effects of carbonation on pore structure and diffusional properties of hydrated cement pastes. Cem Concr Res 27(7):995–1007

    Article  Google Scholar 

  35. Berger RL (1979) Stabilisation of silicate structure by carbonation. Cem Concr Res 9(5):649–651

    Article  Google Scholar 

  36. Sauman Z, Lach V (1972) Long term carbonization of the phases 3CaO.Al2O3.6H2O and 3CaO.Al2O3.4H2O. Cem Concr Res 2:435–446

    Article  Google Scholar 

  37. Cole WF, Kroone B (1959) Carbonate Minerals in Hydrated Portland Cement. Nature 4688:59

    Google Scholar 

  38. Cole WF, Kroone B (1960) Carbon dioxide in hydrated portland cement. J Am Conc Inst 31:1275–1295

    Google Scholar 

  39. Venuat M, Alexandre J (1968) De la carbonatation du béton. Rev Mater Const 638:421–481

    Google Scholar 

  40. Weber H (1983) Methods for calculating the progress of carbonation and the associated life expectancy of reinforced concrete components. Betyonwerk + Fertigteil-Technik 8:508–514

    Google Scholar 

  41. Smolczyck HG (1968) Discussions to M. Hamada’s paper “Neutralization (carbonation) of concrete and corrosion of reinforcing steel”. Presented at the proceedings of 5th international symposium on chemistry of cement, Tokyo

  42. Kokubu M, Nagataki S (1989) Carbonation of concrete with fly ash and corrosion of reinforcements in 20-years test. Presented at the third ICFSS, Trondheim

  43. Sanjuan MA, Andrade C, Cheyrezy M (2003) Concrete carbonation tests in natural and accelerated conditions. Adv Cem Res 15(4):171–180

    Article  Google Scholar 

  44. Engelhardt G, Michel D (1987) High-resolution solid-state NMR of silicates and zeolites. Wiley, Chichester

    Google Scholar 

  45. Mägi M, Lippmaa E, Samoson A et al (1984) Solid-state high-resolution silicon-29 chemical shifts in silicates. J Phys Chem 88:1518–1522

    Article  Google Scholar 

  46. Massiot D, Thiele H, Germanus A (1994) Winfit-a Windows-based program for lineshape analysis. Bruker Report 140:43

    Google Scholar 

  47. Clayden NJ, Dobson CM, Groves GW, Rodeger SA (1986) The application of solid state nuclear magnetic resonance spectroscopy techniques to the study of the hydration of tricalcium silicate. Proceedings of 8th congress international quim cimento

  48. Dobson CM, Goberdhan DGC, Ramsay JDF et al (1988) Silicon-29 MAS NMR study of the hydration of tricalcium silicate in the presence of finely divided silica. J Mater Sci 23(11):4108–4114

    Article  Google Scholar 

  49. Grutzeck M, Benesi A, Fanning B (1989) Silicon-29 magic angle spinning nuclear magnetic resonance study of calcium silicate hydrates. J Am Ceram Soc 72(4):665–668

    Article  Google Scholar 

  50. Rassem R, Zanni-Theveneau H, Schneid I et al (1989) Silicon-29 high-resolution NMR study of tricalcium silicate hydration. J Chim Phys Phys-Chim Biol 86(6):1253–1264

    Google Scholar 

  51. Parrott LJ (1992) Carbonation, moisture and empty pores. Adv Cem Res 4(15):111–118

    Google Scholar 

  52. Parrott LJ, Killoh DC (1989) Carbonation in a 36 year old, in-situ concrete. Cem Concr Res 19(4):649–656

    Article  Google Scholar 

  53. Houst YF, Wittmann FH (2002) Depth profiles of carbonates formed during natural carbonation. Cem Concr Res 32:1923–1930

    Google Scholar 

  54. Grutzeck M, LaRosa-Thompson J, Kwan S (1997) Characteristics of C–S–H gels. In: Justnes H (ed) Proceedings of 10th international congress on chemistry of cement. Amarkai AB, Goeteborg, Sweden, pp 2ii067–10

  55. Cong X, Kirkpatrick RJ (1996) 29Si MAS NMR study of the structure of calcium silicate hydrate. Adv Cem Based Mater 3(3/4):144–156

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank the “Ministerio de Educación y Ciencia” and the C.I.C.Y.T of Spain for the funds provided. We also thank the Department of N.M.R. Spectroscopy from the “Universidad Complutense de Madrid” for the testing facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marta Castellote.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Castellote, M., Fernandez, L., Andrade, C. et al. Chemical changes and phase analysis of OPC pastes carbonated at different CO2 concentrations. Mater Struct 42, 515–525 (2009). https://doi.org/10.1617/s11527-008-9399-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1617/s11527-008-9399-1

Keywords

Navigation