Skip to main content

Advertisement

Log in

Strain-hardening UHP-FRC with low fiber contents

  • Original Article
  • Published:
Materials and Structures Aims and scope Submit manuscript

Abstract

This research work focuses on the optimization of strength and ductility of ultra high performance fiber reinforced concretes (UHP-FRC) under direct tensile loading. An ultra high performance concrete (UHPC) with a compressive strength of 200 MPa (29 ksi) providing high bond strength between fiber and matrix was developed. In addition to the high strength smooth steel fibers, currently used for typical UHP-FRC, high strength deformed steel fibers were used in this study to enhance the mechanical bond and ductility. The study first shows that, with appropriate high strength steel fibers, a fiber volume fraction of 1% is sufficient to trigger strain hardening behavior accompanied by multiple cracking, a characteristic essential to achieve high ductility. By improving both the matrix and fiber parameters, an UHP-FRC with only 1.5% deformed steel fibers by volume resulted in an average tensile strength of 13 MPa (1.9 ksi) and a maximum post-cracking strain of 0.6%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. An M, Zhang L, Yi Q (2008) Size effect on compressive strength of reactive powder concrete. J China Univ Min Technol 18(2):279–282

    Article  Google Scholar 

  2. Bache HH (1981) Densified cement/ultrafine particle-based materials. In: 2nd International conference on superplasticizers in concrete, Ottawa, Canada, 10–12 June

  3. Bache NH (1992) Principles of similitude in design of reinforced brittle matrix composites. In: Proceedings of INTA. Workshop HPFRCC 1 [31], pp 39–56

  4. Behloul M, Bernier G, Cheyrezy M (1996) Tensile behavior of reactive powder concrete (RPC). In: Proceedings of the 4th international symposium on utilization of HSC/HPC, BHP’96, vol 3. Presses de l’ENPC, Paris, pp 1375–1381

  5. Benson SDP, Karihaloo BL (2005) CARDIFRC–development and mechanical properties. Part I: development and workability. Mag Concr Res 57(6):347–352

    Article  Google Scholar 

  6. Benson SDP, Karihaloo BL (2005) CARDIFRC–development and mechanical properties. Part III: uniaxial tensile response and other mechanical properties. Mag Concr Res 57(8):433–443

    Article  Google Scholar 

  7. Boulay C, Rossi P, Tailhan J-L (2004) Uniaxial tensile test on a new cement composite having a hardening behaviour. In: Sixth RILEM symposium in fibre-reinforced concretes (FRC), BEFIB 2004, Varenna, Italy

  8. Chanvillard G, Rigaud S (2003) Complete characterisation of tensile properties of DUCTAL® UHP-FRC according to the French recommendations. In: Fourth international workshop on high performance fiber reinforced cement composites (HPFRCC4)

  9. De Larrard F, Sedran T (1994) Optimization of ultra-high-performance concrete by the use of a packing model. Cem Concr Res 24:997–1009

    Article  Google Scholar 

  10. Fehling E, Schmidt M, Geisenhanslueke C (eds) (2004) International symposium on ultra high performance concrete, Kassel (Schriftenreihe Baustoffe und Massivbau 3)

  11. Fehling E, Schmidt M, Stuerwald S (2008) Second international symposium on ultra high performance concrete, Kassel, (Schriftenreihe Baustoffe und Massivbau 10)

  12. Graybeal BA, Davis M (2008) Cylinder or cube: strength testing of 80 to 200 MPa (11.6 to 29 ksi) ultra-high-performance fiber-reinforced concrete. ACI Mater J 105(6):603–609

    Google Scholar 

  13. Habel K (2004) Structural behaviour of elements combining ultra-high performance fibre reinforced concrete (UHP-FRC) and reinforced concrete. Ph.D. thesis, Ecole Polytechnique Federale de Lausanne

  14. Habel K, Viviani M, Denarie E, Bruehwiler E (2006) Development of the mechanical properties of an ultra-high performance fiber reinforced concrete (UHPFRC). Cem Concr Res 36(7):1362–1370

    Article  Google Scholar 

  15. Issa SA, Islam MS, Issa MA, Yousif AA, Issa MA (2000) Specimen and aggregate size effect on concrete compressive strength. Cem Concr Aggreg 22(2):103–115

    Article  Google Scholar 

  16. Jungwirth J (2006) Zum Tragverhalten von zugbeanspruchten Bauteilen aus Ultra-Hochleistungs-Faserbeton. Ph.D. thesis, EPF Lausanne

  17. Kim D, El-Tawil S, Naaman AE (2008) High tensile strength strain-hardening FRC composites with less than 2% fiber content. In: Proceedings of second international symposium on ultra high performance concrete, Kassel, Germany. pp 169–176

  18. Lankard D (1985) Slurry infiltrated fiber concrete (SIFCON): properties and applications. Very high strength cement-based materials. In: Young JF (ed) Materials research society, symposia proceedings, vol 42. Pittsburgh, Pennsylvania, pp 277–286

  19. Ma J, Tue NV (submitted) Mechanical properties of UHPC in compression. ACI Struct Mater J

  20. Maeder U, Lallemant-Gamboa I, Chaignon J, Lombard J-P (2004) Ceracem, a new high performance concrete: characterisations and applications. In: Schmidt et al (eds) Ultra high performance concrete, Kassel, Germany. pp 59–68

  21. Markovic I (2006) High-performance hybrid-fibre concrete—development and utilisation. Ph.D. thesis, Technische Universität Delft

  22. Naaman AE (1992) SIFCON: tailored properties for structural performance. In Reinhardt, Naaman (eds) High performance fiber reinforced cement composites, proceedings of the international workshop. RILEM, ACI and others, Mainz, Germany, 23–26 June 1991, pp 18–38

  23. Naaman AE (2007) Tensile strain-hardening FRC composites: historical evolution since the 1960’s. In: Gross CU (ed) Proceedings of international workshop on advanced construction materials. Springer-Verlag, Berlin, Heidelberg, pp 181–202

  24. Naaman AE (2008) High performance fiber reinforced cement composites. In: Caijun S, Mo YL (eds) High-performance construction materials. Science and Applications, pp 91–153

  25. Naaman AE, Homrich JR (1989) Tensile stress-strain properties of SIFCON. ACI Mater J 86(3):244–251

    Google Scholar 

  26. Naaman AE, Reinhardt HW (1996) Characterization of high performance fiber reinforced cement composites. In: Naaman AE, Reinhardt FW (eds) High performance fiber reinforced cement composites—HPFRCC 2. RILEM Pb. 31, E and FN Spon, England, pp 1–24

  27. Naaman AE, Reinhardt HW (2006) Proposed classification of FRC composites based on their tensile response. Mater Struct 39:547–555, also In: Mindess S, Banthia N (eds) (2005) Proceeding of symposium honoring. University of British Columbia, Canada, August 2005. Electronic proceedings, 13 pp

    Google Scholar 

  28. Naaman AE, Wille K (2010) Some correlation between high packing density, ultra-high performance, flow ability, and fiber reinforcement of a concrete matrix. In: BAC2010—2nd Iberian congress on self compacting concrete, University of Minho—Guimaraes, Portugal, July 1–2

  29. Orange G, Dugat J, Acker P (2000) DUCTAL: new ultra high performance concretes. Damage, resistance and micromechanical analysis. In: Rossi P, Chanvillard G (eds) BEFIB 2000, fifth RILEM symposium on fiber-reinforced concretes (FRC). Lyon, pp 781–790

  30. Reinhardt HW, Fritz C (1989) “Optimization of SIFCON Mix,” Fibre Reinforced Cements and Concretes: Recent Developments, Cardiff, UK, 18-20 Sept., pp. 11-20

  31. Reinhardt HW, Naaman AE (eds) (1992) High performance fiber reinforced cement composites. Rilem proceedings 15. E and FN Spon, London

  32. Richard P, Cheyrezy M (1995) Composition of reactive powder concretes. Cem Concr Res 25(7):1501–1511

    Article  Google Scholar 

  33. Rossi P (1997) High performance multimodal fibre reinforced cement composite (HPMFRCC): the LCPC experience. ACI Mater J 94(6):478–483

    Google Scholar 

  34. Rossi P, Acker P, Malier Y (1987) Effect of steel fibers at two stages: the material and the structure. Mater Struct 20:436–439

    Article  Google Scholar 

  35. Rossi P, Arca A, Parant E, Fakhri P (2005) Bending and compressive behaviors of a new cement composite. Cem Concr Res 35:27–33

    Article  Google Scholar 

  36. Schmidt M, Fehling E, Bormeman R, Middenhof B (2001) Ultra-Hochleistungsbeton: Herstellung, Eigenschaften und Anwendungsmöglichkeiten. In: Beton- und Stahlbetonbau, Jahrgang 96. Heft 7, Verlag Ernst and Sohn, Berlin, pp 458–467 (in German)

  37. Skazlic M, Serdan M, Bjegovic D (2008) Influence of test specimens geometry on compressive strength of ultra high performance concrete. In: Proceedings of the second international symposium on ultra high performance concrete, Kassel, Germany. pp 296–301

  38. Sujiravorakul C (2001) Development of high performance fiber reinforced cement composites using twisted polygonal steel fibers. PhD thesis, University of Michigan, Ann Arbor, pp 230

  39. Sujivorakul C, Naaman AE (2003) Tensile response of HPFRC composites using twisted polygonal steel fibers. In: Banthia N, Criswell M, Tatnall P, Folliard K (eds) Innovations in fiber-reinforced concrete for value, ACI Special Publication, SP216, American Concrete Institute, pp 161–179

  40. Wille K, Naaman AE (2010) Fracture energy of UHPFRC under direct tensile loading. In: FraMCoS-7 international conference, Jeju, Korea

  41. Wille K, Naaman AE, Parra-Montesinos GJ (2010) Ultra high performance concrete with compressive strength exceeding 150 MPa (22 ksi): a simpler way. ACI Mater J (accepted for publication)

  42. Wuest J, Denarie E, Bruehwiler E (2008) Model for predicting the UHP-FRC tensile hardening response. In: Ultra high performance concrete, Kassel, Germany, pp 153–160

Download references

Acknowledgments

The first author would like to acknowledge the support of the German Academic Exchange Service (DAAD) for awarding him a fellowship within the Postdoc-Programme. The authors would like to acknowledge the support of the US National Science Foundation under grant No. CMS 0754505. Sincere thanks are also due to the following companies for providing free materials for this study: BASF Construction Chemicals, Bekaert, Holcim (US) Inc., Elkem Materials, Grace Construction Products, Lehigh Cement Company, Sika Corporation. The opinions expressed in this paper are those of the authors and do not necessarily reflect the views of the sponsors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kay Wille.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wille, K., Kim, D.J. & Naaman, A.E. Strain-hardening UHP-FRC with low fiber contents. Mater Struct 44, 583–598 (2011). https://doi.org/10.1617/s11527-010-9650-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1617/s11527-010-9650-4

Keywords

Navigation