Skip to main content
Log in

Characterization of the interfacial transition zone around steel rebar by means of the mean shift method

  • Original Article
  • Published:
Materials and Structures Aims and scope Submit manuscript

Abstract

A novel method is introduce for image analysis of the interfacial transition zone around steel rebar. The method uses information from the neighbourhood of each pixel in addition to that of the pixel itself. This additional information allows for better classification than using the gray level information alone. The mean shift algorithm was used as an intermediate stage of classification to find the cluster centers. The results show that the presented method can classify images better than gray-level thresholding, and allows extracting some parameters of the interfacial transition zone which cannot be extracted while using the gray-level thresholding alone, this reliable information can be used to scan large number of images and for obtaining statistical based information on the micro-structure of concrete.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Bentur A, Alexander M (2000) A review of the work of the RILEM tc 159-etc: engineering of the interfacial transition zone in cementitious composites. Mater Struct 33:82–87. http://dx.doi.org/10.1007/BF02484160

  2. Brough AR, Atkinson A (2000) Automated identification of the aggregate-paste interfacial transition zone in mortars of silica sand with portland or alkali-activated slag cement paste. Cem Concr Res 30(6):849–854. doi:10.1016/S0008-8846(00)00254-4. http://www.sciencedirect.com/science/article/B6TWG-4118CN7-2/2/d3dd63c17be17795791707ca939e2f33

  3. Davydov D, Jirasek M, Kopecky L (2011) Critical aspects of nano-indentation technique in application to hardened cement paste. Cem Concr Res 41(1):20–29. doi:10.1016/j.cemconres.2010.09.001. http://www.scopus.com/inward/record.url?eid=2-s2.0-78649330098&partnerID=40&md5=5b12d694abb9161bd17da05492cdd437

  4. Diamond S (2001) Considerations in image analysis as applied to investigation of the ITZ in concrete. Cem Concr Res 23(2–3):171–178

    Article  Google Scholar 

  5. Farran J (1956) Contribution mineralogique a l’etude de l’adherence entre les constituants hydrates des ciments et les materiaux enrobes. Materiaux et Constructions, pp 490–491

  6. Georgescu B, Shimshoni I, Meer P (2003) Mean shift based clustering in high dimensions: a texture classification example. In: Proceedings of the IEEE international conference on computer vision, vol 1, pp 456–463

  7. Glass G, Reddy B (2002) The influence of the steel concrete interface on the risk of chloride induced corrosion initiation. In: Weydert R (ed) Corrosion of steel in reinforced concrete structures, pp 227–232

  8. Glass GK, Yang R, Dickhaus T, Buenfeld NR (2001) Backscattered electron imaging of the steel–concrete interface. Corros Sci 43(4):605–610. doi:10.1016/S0010-938X(00)00146-3. http://www.sciencedirect.com/science/article/B6TWS-423YJVS-1/2/db083f68c7a3b29efabf0426282e64ca

    Google Scholar 

  9. Goldstein JI, Romig AD Jr, Newbury DE, Lyman CE, Echlin P, Fiori C, Joy DC, Lifshin E (1992) Scanning electron microscopy and X-ray microanalysis, 2nd edn. Plenum Press, New York

  10. Horne A, Richardson I, Brydson R (2007) Quantitative analysis of the microstructure of interfaces in steel reinforced concrete. Cem Concr Res 37(12):1613–1623, doi:10.1016/j.cemconres.2007.08.026. http://www.sciencedirect.com/science/article/B6TWG-4R0CFP6-2/2/d47172fd929d62e853838260bc17054e

  11. Kenny A (2011) The micro structure of concrete around embedded steel influence on the chloride threshold for chloride induced corrosion. PhD thesis, Technion-Israel Institute of Technology

  12. Kenny A, Katz A (2009) The effect of syteel–concrete microstructure on the chloride threshold for chloride induced corrosion. In: Kovler K (ed) Concrete durability and service life planing—ConcreteLife’99, vol PRO 66. RILEM, pp 92–99

  13. Koleva D, Hu J, Fraaij A, van Breugel K, de Wit J (2007) Microstructural analysis of plain and reinforced mortars under chloride-induced deterioration. Cem Concr Res 37(4):604–617. doi:10.1016/j.cemconres.2006.12.001. http://www.sciencedirect.com/science/article/B6TWG-4MVDVNF-1/2/96821c85dc09432fe729d1e48225d0aa

  14. Koleva D, Copuroglu O, van Breugel K, Ye G, de Wit J (2008) Electrical resistivity and microstructural properties of concrete materials in conditions of current flow. Cem Concr Compos 30(8):731–744. doi:10.1016/j.cemconcomp.2008.04.001. http://www.sciencedirect.com/science/article/B6TWF-4SH0XVB-1/2/fad3c9a60a3abaa86f859f7d05d74896

  15. Koleva D, de Witb J, van Breugela K, Velevac L, van Westingd E, Copuroglua O, Fraaij A (2008) Correlation of microstructure, electrical properties and electrochemical phenomena in reinforced mortar. breakdown to multi-phase interface structures. Part II. Pore network, electrical properties and electrochemical response. Mater Character 59(6):801–815

    Article  Google Scholar 

  16. Leung T, Malik J (2001) Representing and recognizing the visual appearance of materials using three-dimensional textons. Int J Comput Vis 43(1):29–44

    Article  MATH  Google Scholar 

  17. Mohammed T, Hamada H (2001) A discussion of the paper “chloride threshold values to depassivate reinforcing bars embedded in a standardized opc mortar” by C. Alonso, C. Andrade, M. Castellote, and P. Castro. Cem Concr Res 31(5):835–838. doi:10.1016/S0008-8846(01)00485-9. http://www.scopus.com/inward/record.url?eid=2-s2.0-0035330930&partnerID=40&md5=9b8ea4f1723b3916f9287c860e7bb036

  18. Odler I (1998) Hydration, setting and hardening of portland cement. In: Hewlett P (ed) Lea’s chemistry of cement and concrete, Chap 6, 4th edn. Arnold, London, pp 241–298

  19. Ollivier JP, Maso JC, Bourdette B (1995) Interfacial transition zone in concrete. Adv Cement Base Mater 2(1):30–38. doi:10.1016/1065-7355(95)90037-3. http://www.sciencedirect.com/science/article/B6TW6-473M6PG-20/2/8b73584df2794840c26524c6b818e159

  20. Scrivener K (2004) Backscattered electron imaging of cementitious microstructures: understanding and quantification. Cem Concr Compos 26(8):935–945. http://www.scopus.com/inward/record.url?eid=2-s2.0-5144224121&partnerID=40&md5=33c851b374b1e6a0865b55c9c3f74cf5

  21. Shimshoni I, Georgescu B, Meer P (2006) Adaptive mean shift based clustering in high dimensions. In: Shakhnarovich G, Darrell T, Indyk P (eds) Nearest-neighbor methods in learning and vision: theory and practice, chap 9. MIT Press, pp 203–220

  22. The MathWorks, Inc (2007) MATLAB 2007b

  23. Trtik P, Munch B, Lura P (2009) A critical examination of statistical nanoindentation on model materials and hardened cement pastes based on virtual experiments. Cem Concr Compos 31(10):705–714. doi:10.1016/j.cemconcomp.2009.07.001. http://www.sciencedirect.com/science/article/B6TWF-4WS9BK8-1/2/3b682b7bf1710cfae3850ec6076a968a

  24. Ujike I, Buenfeld NR (2006) Development of a method quantifying entrapped air voids at steel–concrete interface in real structure. In: Kovler K (ed) RILEM proceeding, vol 46, pp 119–128

  25. Wong HS, Head MK, Buenfeld NR (2006) Pore segmentation of cement-based materials from backscattered electrone images. Cem Concr Res 36:1083–1090

    Article  Google Scholar 

  26. Zhu W, Sonebi M, Bartos P (2004) Bond and interfacial properties of reinforcement in self compacting concrete. Mater Struct 37(271):442–448

    Article  Google Scholar 

Download references

Acknowledgment

Partial support by the Israel–Germany Foundation (GIF) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amit Kenny.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kenny, A., Katz, A. Characterization of the interfacial transition zone around steel rebar by means of the mean shift method. Mater Struct 45, 639–652 (2012). https://doi.org/10.1617/s11527-011-9786-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1617/s11527-011-9786-x

Keywords

Navigation