Skip to main content
Log in

Modified Variable Angle Truss-Model for torsion in reinforced concrete beams

  • Original Article
  • Published:
Materials and Structures Aims and scope Submit manuscript

Abstract

A new computation procedure is developed to predict the overall behaviour of reinforced concrete beams under torsion. This procedure is based on a modification of the classic Variable Angle Truss-Model in order to make it capable of predicting the behaviour of the beams under torsion for all loading states. The theoretical predictions are compared with the results from reported tests. Conclusions are presented. The main conclusion is that the new procedure described in this paper gives very good predictions when compared with the actual overall behaviour of the beams.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33
Fig. 34
Fig. 35
Fig. 36

Similar content being viewed by others

References

  1. ACI Committee 318 (2005) Building Code Requirements for Reinforced Concrete (ACI 318-05) and Commentary (ACI 318R-05). American Concrete Institute, Detroit

  2. Andersen P (1935) Experiments with concrete in torsion. Trans ASCE 100:949–983

    Google Scholar 

  3. Andrade JMA (2010) Modelação do Comportamento Global de Vigas Sujeitas à Torção – Generalização da Analogia da Treliça Espacial com Ângulo Variável (Modeling of Beams under Torsion – Generalization of Space Truss Analogy with Variable Angle). PhD Thesis. Department of Civil Engineering and Architecture, Faculty of Engineering of University of Beira Interior, Covilhã (in Portuguese)

  4. Andrade JMA, Bernardo LFA (2011) TORQUE_ STMTVAmod: computing tool to calculate the global behaviour of reinforced and prestressed concrete beams in torsion. ICEUBI 2011—International Conference on Engineering UBI2011—Inovation & Development, 28–30 November 2011, UBI, Covilhã, Portugal

  5. Belarbi A, Hsu TC (1991) Constitutive laws of softened concrete in biaxial tension-compression. Research Report UHCEE 91-2, University of Houston, Houston

  6. Belarbi A, Hsu TC (1994) Constitutive laws of concrete in tension and reinforcing bars stiffened by concrete. Struct J Am Concr Inst 91(4):465–474

    Google Scholar 

  7. Bernardo LFA, Lopes SMR (2008) Behaviour of concrete beams under torsion—NSC plain and hollow beams. Mater Struct 41(6):1143–1167

    Article  Google Scholar 

  8. Bernardo LFA, Lopes SMR (2009) Plastic analysis of HSC beams in flexure. Mater Struct 42(1):51–69

    Article  Google Scholar 

  9. Bernardo LFA, Lopes SMR (2009) Torsion in HSC hollow beams: strength and ductility analysis. ACI Struct J 106(1):39–48

    Google Scholar 

  10. Bernardo LFA, Lopes SMR (2011) High-strength concrete hollow beams strengthened with external transversal steel reinforcement under torsion. J Civ Eng Manag 17(3):330–339

    Article  Google Scholar 

  11. Bernardo LFA, Lopes SMR (2011) Theoretical behaviour of HSC sections under torsion. Eng Struct 33(12):3702–3714

    Article  Google Scholar 

  12. Bhatti MA, Almughrabi A (1996) Refined model to estimate torsional strength of reinforced concrete beams. J Am Concr Inst 93(5):614–622

    Google Scholar 

  13. Bredt R (1896) Kritische Bemerkungen zur Drehungselastizitat (Critical remarks on the elasticity rotation). Zeitschrift des Vereines Deutscher Ingenieure 40(28):785–790, 40(29):813–817 (in German)

  14. Collins MP, Mitchell D (1980) Shear and torsion design of prestressed and non-prestressed concrete beams. J Prestressed Concr Inst 25(5):32–100

    Google Scholar 

  15. Cowan HJ (1950) Elastic theory for torsional strength of rectangular reinforced concrete beams. Mag Concr Res 2(4):3–8

    Article  MathSciNet  Google Scholar 

  16. Elfgren L (1972) reinforced concrete beams loaded in combined torsion, bending and shear. Publication 71:3, Division of Concrete Structures, Chalmers University of Technology, Goteborg

  17. Elfgren, L (1979) Torsion-bending-shear in concrete beams: a kinematic model. “Plasticity in reinforced concrete”, a workshop arranged in Copenhagen by the International Association for Bridge and Structural Engineering (IABSE), vol 29. Reports of the Working Commissions, pp 111–118

  18. Fang I-K, Shiau J-K (2004) Torsional behaviour of normal- and high-strength concrete beams. ACI Struct J 101(3):304–313

    Google Scholar 

  19. Hsu TTC (1968) Torsion of structural concrete—behaviour of reinforced concrete Rectangular members. Torsion of Structural Concrete, SP-18, American Concrete Institute, Detroit, pp 261–306

  20. Hsu TCC (1973) Post-cracking torsional rigidity of reinforced concrete sections. J Am Concr Inst 70(5):352–360

    Google Scholar 

  21. Hsu TTC (1984) Torsion of reinforced concrete. Van Nostrand Reinhold Company, New York

    Google Scholar 

  22. Hsu TTC, Mo YL (1985) Softening of concrete in torsional members—theory and tests. J Am Concr Inst 82(3):290–303

    Google Scholar 

  23. Jeng C-H, Hsu TTC (2009) A softened membrane model for torsion in reinforced concrete members. Eng Struct 31(2009):1944–1954

    Article  Google Scholar 

  24. Lampert P, Thurlimann B (1969) Torsionsversuche an Stahlbetonbalken (Torsion tests of reinforced concrete beams). Bericht, Nr. 6506-2. Institut fur Baustatik, ETH, Zurich (in German)

  25. Leonhardt F, Schelling G (1974) Torsionsversuche an Stahl Betonbalken (Torsion tests on reinforced concrete beams). Bulletin No. 239, Deutscher Ausschuss fur Stahlbeton, Berlin. (in German)

  26. Lopes SMR, Bernardo LFA (2003) Plastic rotation capacity of high-strength concrete beams. Mater Struct 36(255):22–31

    Article  Google Scholar 

  27. McMullen AE, Rangan BV (1978) Pure torsion in rectangular sections—a re-examination. J Am Concr Inst 75(10):511–519

    Google Scholar 

  28. Mitchell D, Collins MP (1974) Diagonal compression field theory—a rational model for structural concrete in pure torsion. ACI J 71(8):396–408

    Google Scholar 

  29. Müller, P (1976) Failure mechanisms for reinforced concrete beams in torsion and bending. Publications vol 36-11. International Association for Bridge and Structural Engineering (IABSE), Zürich, pp 147–163

  30. NP EN 1992-1-1 (2010) Eurocode 2: design of concrete structures—part 1: general rules and rules for buildings

  31. Rahal KN, Collins MP (1996) Simple model for predicting torsional strength of reinforced and prestressed concrete sections. J Am Concr Inst 93(6):658–666

    Google Scholar 

  32. Rasmussen LJ, Baker G (1995) Torsion in reinforced normal and high-strength concrete beams—part 1: experimental test series. J Am Concr Inst 92(1):56–62

    Google Scholar 

  33. Rausch E (1929) Berechnung des Eisenbetons gegen Verdrehung (Design of reinforced concrete in torsion). PhD Thesis, Berlin (in German)

  34. Saint-Venant B (1856) Mémoire sur la torsion des prismes (Memory on prisms under torsion). Mémoires des savants étrangers, vols 14. Imprimerie Impériale, Paris, pp 233–560

  35. Schladitz F, Curbach M (2012) Torsion tests on textile-reinforced concrete strengthened specimens. Mater Struct 45(1):31–40

    Article  Google Scholar 

  36. Walsh PF, Collins MP, Archer FE, Hall AS (1966) The ultimate strength design of rectangular reinforced concrete beams subjected to combined torsion, bending and shear, vol CE8, No. 2. Civil Engineering Transactions, The Institution of Engineers, Australia, pp 143–157

  37. Wang W, Hsu CTT (1997) Limit analysis of reinforced concrete beams subjected to pure torsion. J Struct Eng 123(1):86–94

    Article  Google Scholar 

  38. Zhang LX, Hsu TC (1998) Behaviour and analysis of 100 MPa concrete membrane elements. J Struct Eng 124(1):24–34

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. F. A. Bernardo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bernardo, L.F.A., Andrade, J.M.A. & Lopes, S.M.R. Modified Variable Angle Truss-Model for torsion in reinforced concrete beams. Mater Struct 45, 1877–1902 (2012). https://doi.org/10.1617/s11527-012-9876-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1617/s11527-012-9876-4

Keywords

Navigation