Skip to main content
Log in

Using the Karsten tube to estimate water transport parameters of porous building materials

The possibilities of analytical and numerical solutions

  • Original Article
  • Published:
Materials and Structures Aims and scope Submit manuscript

Abstract

Over the last decades the Karsten tube has been used as a versatile testing device to measure the water absorption of porous walls. It is non-destructive and it can give reproducible results when used accurately. A major drawback however is the lack of a physical interpretation of the results. This paper uses analytical models and a numerical simulation in 3D to allow a more fundamental and general interpretation of the test results. A relatively simple model for a soil infiltrometer test was proven to give a good fit to experimental field data and to lab test results. 3D numerical simulations, performed with Delphin 5 software, provide extra insight about the correctness of the model assumptions of a sharp front process and a simplified shape of the wetting front. A supplementary measurement of the increase of the diameter of the wetted zone during the test allows a straightforward calculation of the capillary saturated moisture content and the sorptivity of the material. Moreover an analytical relation is presented between the results of the Karsten test as described in the old standards and the sorptivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. Baronio G, Binda L, De Clercq H, De Witte E, Ferrieri E, Franceschi P, Garavaglia E, Koek J, Molina C, Naldini S, Rocca P, Squarcina P, Van Hees R (1996) Evaluation of the performance of surface treatments for the conservation of historic brick masonry. Tech. rep., IRPA-KIK, PDM-DIS, ICITE, TNO Bouw

  2. CEN TC 346 / WG 3 (2010) Measurement of water absorption under low pressure, unpublished draft

  3. De Clercq H, Vanhellemont Y, Pien A (2010) Duurzaamheid van waterwerende behandelingen. In: H. De Clercq (ed) Waterwerende behandelingen: realistisch of utopisch? Royal Institute for Cultural Heritage, Brussels

  4. De Witte E, De Clercq H, van Hees R, Koek J, Binda L, Baronio, G, Ferrieri, E (1996) Measurement techniques. In: C EV5V-CT94-0515 (ed) Evaluation of the performance of surface treatments for the conservation of historic brick masonry, IRPA-KIK and PDM-DIS and ICITE and TNO, pp 1–20

  5. Dewanckele J, De Kock T, Boone MA, Cnudde V, Brabant L, Boone MN, Fronteau G, Van Hoorebeke L, Jacobs P (2012) 4D imaging and quantification of pore structure modifications inside natural building stones by means of high resolution X-ray CT. Sci Total Environ 416:436–448

    Article  Google Scholar 

  6. Dohnal M, Dusek J, Vogel T (2010) Improving hydraulic conductivity estimates from Minidisk infiltrometer measurements for soils with wide pore-size distributions. Soil Sci Soc Am J 74(3):804

    Article  Google Scholar 

  7. Fronteau G, Schneider-Thomachot C, Chopin E, Barbin V, Mouze D, Pascal A (2010) Black-crust growth and interaction with underlying limestone microfacies. In: Prikryl R, Török A (eds) Natural stone resources for historical monuments. Geological Society of London, London, pp 25–34

  8. Gérard R (1978) L’état de la surface d’un matérieu poreux caractérisé par une mesure d’absorption d’eau. In: Deterioration and protection of stone monuments. RILEM-UNESCO, Paris, p 3.11

  9. Groot C, Gunneweg J (2005) Totaalonderzoeksproject aanpak vochtproblematiek massief metselwerk. Deelonderzoek kwaliteitseisen restauratiebaksteen. Tech. rep., TUDelft, Delft

  10. Hall C, Hoff W (2002) Water transport in brick, stone and concrete. Taylor & Francis, London

    Book  Google Scholar 

  11. Haverkamp R, Ross PJ, Smettem KRJ, Parlange JY (1994) Three-dimensional analysis of infiltration from the disc infiltrometer. 2. Physically based infiltration equation. Water Resour Res 30(11):2931–2935

    Article  Google Scholar 

  12. Hendrickx R, Roels S (2011) IWT Collectief onderzoek 399.576 nieuwe technieken ter remediëring van zoutbelast metselwerk. Eindverslag KULeuven afdeling bouwfysica. Tech. rep., KULeuven, Leuven

  13. Karsten R (2002) Bauchemie für Studium und Praxis, 10th edn. Müller, Heidelberg

  14. Meinhardt-Degen J, Snethlage R (2004) Durability of hydrophobic treatment on sandstone facades—investigations of the necessity and effects of retreatment. In: Kwiatkowski D, Löfvendahl R (eds) Proceedings of the 10th international congress on the deterioration and conservation of stone. ICOMOS, Stockholm, pp 347–354

  15. Nicolai A (2007) Modeling and numerical simulation of salt transport and phase transition in unsaturated porous building materials. Phd, Syracuse University

  16. RILEM TC 25-PEM (1980) Recommended tests to measure the deterioration of stone and to assess the effectiveness of treatment methods. Mater Struct 13(75):175–253 (in french)

    Google Scholar 

  17. Siedel H, Siegesmund S, Sterflinger K (2011) Characterisation of stone deterioration on buildings. In: Siegesmund S, Snethlage R (eds) Stone in architecture, 4th edn. Springer, Berlin, pp 347–410

  18. Siegesmund S, Snethlage R (2011) Stone in architecture, 4th edn. Springer, Berlin

  19. Smettem KRJ, Parlange JY, Ross PJ, Haverkamp R (1994) Three-dimensional analysis of infiltration from the disc infiltrometer. 1. A capillary-based theory. Water Resour Res 30(11):2925–2929

    Article  Google Scholar 

  20. Van Genuchten M (1980) A closed-form equation for the prediction of the hydraulic conductivity of unsaturated soils. Soil Sci Soc Am J 44(5):892–895

    Article  Google Scholar 

  21. Vandevoorde D, Pamplona M, Schalm O, Vanhellemont Y, Cnudde V, Verhaeven E (2009) Contact sponge method: performance of a promising tool for measuring the initial water absorption. Journal of Cultural Heritage 10(1):41–47

    Article  Google Scholar 

  22. Wendler E, Snethlage R (1989) Der Wassereindringprüfer nach Karsten—Anwendung und Interpretation der Messwerte. Bautenschutz + Bausanierung 12(6):110–115

    Google Scholar 

Download references

Acknowledgements

Hilde De Clercq and Yves Vanhellemont are kindly acknowledged for improving the text and providing useful information.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roel Hendrickx.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hendrickx, R. Using the Karsten tube to estimate water transport parameters of porous building materials. Mater Struct 46, 1309–1320 (2013). https://doi.org/10.1617/s11527-012-9975-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1617/s11527-012-9975-2

Keywords

Navigation