Skip to main content
Log in

Experimental analysis of masonry infilled frames using digital image correlation

  • Original Article
  • Published:
Materials and Structures Aims and scope Submit manuscript

Abstract

A measurement technique (digital image correlation) is used for a critical evaluation of simplified models for infilled framed structures. It allows for the assessment of displacement and strain fields in the panel of interest. Several specimens, including infilled and partially infilled frames were subjected to cyclic lateral loads. It was found that two very different deformation mechanisms appear in the masonry panels namely, a first one during the hardening phase and another one, completely different, during the softening stage. For the former, strain concentration bands are observed. After the peak load, horizontal bands appear in the middle of the panels. The Polyakov assumption, i.e. that the panel can be replaced by struts in the analysis, is validated in the hardening stage. However, the orientation of the struts suggested in the literature was not found experimentally. The experimental results demonstrate that the inclination of the bands depends on the brick dimensions and arrangement. Further, the final failure mechanism corresponds to a sliding shear mode.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Smith BS (1966) Behavior of square infilled frames. J Struct Div 1:381–403

    Google Scholar 

  2. Smith BS, Carter C (1969) A method of analysis for infilled frames. Proc Inst Civ Eng Struct Build 44:31–48

    Article  Google Scholar 

  3. Liaw TC (1979) Tests on multistory infilled frames subjected to dynamic lateral loading. J Am Concr Inst 76(4):551–560

    Google Scholar 

  4. Negro P, Anthoine A, Combescure D, Magonette G, Molina J, Pegon P. Verzeletti G (1995) Tests on the four-storey reinforced concrete frame with masonry infills: preliminary report. Special Publication No 195.54. Ispra, VA, Italy

  5. Mehrabi AB, Shing PB, Schuller M, Noland J (1996) Experimental evaluation of masonry-infilled RC frames. J Struct Eng 122(3):228–237

    Article  Google Scholar 

  6. Chiou Y, Tzeng J, Liou Y (1999) Experimental and analytical study of masonry infilled frames. J Struct Eng 1109−1117

  7. El-Dakhakhni W (2000) Experimental and analytical seismic evaluation of concrete masonry-infilled steel frames retrofitted using GFRP laminates. Electronics Theses DSpace at Drextel University Libraries

  8. Al-Chaar G, Issa M, Sweeney S (2002) Behavior of masonry-infilled nonductile reinforced concrete frames. J Struct Eng 128(8):1055–1063

    Article  Google Scholar 

  9. Tasnimi A, Mohebkhah A (2011) Investigation on the behavior of brick-infilled steel frames with openings, experimental and analytical approaches. Eng Struct 33:968–980

    Article  Google Scholar 

  10. Mendoza-Perez JCS, Rico-Garcia E, Flores-Corona LE (2011) Effect of connector density on shear capacity of reinforced masonry wallettes. Indian J Eng Mater Sci 18(2):157–160

    Google Scholar 

  11. Colunga AT, Juárez A, Salinas VH (2007) Resistencia y deformación de muros de mampostería combinada y confinada sujetos a cargas laterales. Revista de Ingeniería Sísmica, Universidad Autónoma Metropolitana, México 76: 29–60

  12. Anil Ö, Altin S (2007) An experimental study on reinforced concrete partially infilled frames. Eng Struct 29:449–460

    Article  Google Scholar 

  13. Asteris PG, Antoniou ST, Sophianopoulos DS, Chrysostomou CZ (2011) Mathematical macromodeling of infilled frames: state of the Art. J Struct Eng 137(12):1508–1517

    Article  Google Scholar 

  14. Asteris PG, Kyriazopoulos AD, Vouthounis PA (2002) The state-of-the-art in infilled frames numerical models. In: Proceedings of the Structural Engineering World Congress (SEWC2002), Yokohama, Japan, Oct 2002, Paper No T1-2-c2

  15. Asteris PG (2008) Finite element micro-modeling of infilled frames. Electron J Struct Eng 8:1–11

    Google Scholar 

  16. Marllick DV, Severn RT (1967) The behaviour of infilled frames. J Struct Div 88:183–199

    Google Scholar 

  17. Liauw TC, Kwan KH (1984) Nonlinear behaviour of nonintegral infilled frames. Comput Struct 18:551–560

    Article  Google Scholar 

  18. Papia M (1988) Analysis of infilled frames using a coupled finite element and boundary element solution scheme. Int J Numer Methods Eng 26:731–742

    Article  MATH  Google Scholar 

  19. Haris I, Hortobagyi Z (2012) Different FEM models of reinforced concrete frames stiffened by infill masonry for lateral loads. Period Polytech Civil Eng 56(1):25–34

    Article  Google Scholar 

  20. Lofti HR, Shing PB (1994) Interface model applied to fracture of masonry structures. J Struct Eng 120:63–80

    Article  Google Scholar 

  21. Lourenço PB, Rots JG (1997) Multisurface interface model for analysis of masonry structures. J Eng Mech 123:660–668

    Article  Google Scholar 

  22. Singh H, Paul DK, Sastry VV (1998) Inelastic dynamic response of reinforced concrete infilled frames. Comput Struct 69(6):685–693

    Article  MATH  Google Scholar 

  23. Van Zijl GPAG (2004) Modeling masonry shear-compression: role of dilatancy highlighted. J Eng Mech 130:1289–1296

    Article  Google Scholar 

  24. El-Dakhakhni W, Elgaaly M, Hamid A (2003) Three-strut model for concrete masonry-infilled steel frames. J Struct Eng 129(2):177–185

    Article  Google Scholar 

  25. Polyakov VS (1956) Masonry in framed buildings. Godsudarstvenoe Isdatel’ stvo Literatury Po Stroidal stvui Architecture, Moscow

  26. Klingner RE, Bertero VV (1976) Infilled frames in earthquake resistant construction. Report 76032, University of California, Berkeley

  27. Zarnic R, Tomazevic M (1984) The behavior of masonry infilled reinforced concrete frames subjected to cyclic lateral loading. In: Proceedings of ninth world conference on earthquake engineering, San Francisco, USA, VI, 863–870

  28. Chrysostomou CZ, Gergely P, Abel JF (2002) A six-strut model for nonlinear dynamic analysis of steel infilled frames. Int J Struct Stab Dyn 2(3):335–353

    Article  Google Scholar 

  29. Zarnic R (1994) Inelastic model of RC frame with masonry infilled-analytical approach. Eng Model 7:47–54

    Google Scholar 

  30. Crisafulli F, Carr A, Park R (2000) Analytical modeling of infilled frame structures. A general review. Bull N Z Soc Earthq Eng 33(1):30–47

    Google Scholar 

  31. Rodrigues H, Varum H, Costa A (2010) Simplified macro-model for infill masonry panels. J Earthq Eng 14(3):390–416

    Article  Google Scholar 

  32. Zhang CQ, Zhou Y, Zhou DY, Lu XL (2011) Study on the effect of the infill walls on the seismic performance of a reinforced concrete frame. Earthq Eng Eng Vib 10(4):507–517

    Article  Google Scholar 

  33. Chrysostomou CZ, Asteris PG (2012) On the in-plane properties and capacities of infilled frames. Eng Struct 41:385–402

    Article  Google Scholar 

  34. Hak S, Morandi P, Magenes G, Sullivan TJ (2012) Damage control for clay masonry infills in the design of RC frame structures. J Earthq Eng 16(SI-1):1–35

    Google Scholar 

  35. Asteris PG (2003) Lateral stiffness of brick masonry infilled plane frames. J Struct Eng (ASCE) 129(8):1071–1079

    Google Scholar 

  36. Mohebkhah A, Tasnimi AA (2012) Distinct element modeling of masonry-infilled steel frames with openings. Open Constr Build Technol J 6:42–49

    Article  Google Scholar 

  37. Asteris PG, Kakaletsis DJ, Chrysostomou CZ, Smyrou EE (2011) Failure modes of infilled frames. Electron J Struct Eng 11(1):11–20

    Google Scholar 

  38. Besnard G, Hild F, Roux S (2006) “Finite element” displacement fields analysis from digital images: application to Portevin-Le Châtelier bands. Exp Mech J 46(6):789–803

    Article  Google Scholar 

  39. Chrysotomou CZ (1991) Effects of degrading infill walls on the nonlinear seismic response of two-dimensional steel frame. Ph.D Thesis, Cornell University

  40. Forquin P, Rota L, Charles Y, Hild F (2004) A method to determine the macroscopic toughness scatter of brittle materials. Int J of Fract 125:171–187

    Article  Google Scholar 

  41. Sutton MA, Li N, Garcia D, Cornille N, Orteu JJ, McNeill SR, Schreier HW, Li X, Reynolds AP (2007) Scanning electron microscopy for quantitative small and large deformation measurements part ii: experimental validation for magnifications from 200 to 10,000. Exp Mech 47(6):789–804

    Article  Google Scholar 

  42. Sutton MA, McNeill SR, Helm JD, Chao YJ (2000) Advances in two-dimensional and three-dimensional computer vision. In: Photomechanics. Springer, Berlin. Top Appl Phys 77:323–372

  43. Küntz M, Jolin M, Bastien J, Perez F, Hild F (2006) Digital image correlation analysis of crack behavior in a reinforced concrete beam during a load test. Can J Civil Eng 33:1418–1425

    Article  Google Scholar 

  44. Bornert M, Chaix JM, Doumalin P, Dupré J-C, Fournel T, Jeulin D, Maire E, Moreaud M, Moulinec H (2004) Mesure tridimensionnelle de champs cinématiques par imagerie volumique pour l’analyse des matériaux et des structures. Inst Mes Métrol 4:43–88

    Google Scholar 

  45. Roux S, Hild F, Viot P, Bernard D (2008) Three dimensional image correlation from X-ray computed tomography of solid foam. Compos Part A 39(8):1253–1265

    Article  Google Scholar 

  46. Hild F, Raka B, Baudequin M, Roux S, Cantelaube F (2002) Multi-scale displacement field measurements of compressed mineral wool samples by digital image correlation. Appl Opt IP 41(32):6815–6828

    Article  Google Scholar 

  47. Martínez M (2007) Análisis experimental del comportamiento de muros de mampostería confinada. Master thesis, University of Los Andes, Venezuela

  48. Guerrero N (2007) Análisis Teórico-Experimental del Daño y del Pandeo Local en Estructuras de Ingeniería Civil. Doctoral Thesis, University of Los Andes, Venezuela

Download references

Acknowledgments

The results presented in this paper were obtained in the course of an investigation sponsored by FONACIT-ECOS NORD and CDCHT-UCLA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ricardo Picón.

Appendices

Appendix 1

See Fig. 16.

Fig. 16
figure 16

Geometric characteristics of single bay frame

Appendix 2

See Fig. 17.

Fig. 17
figure 17

Geometric characteristics of two bay frame

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guerrero, N., Martínez, M., Picón, R. et al. Experimental analysis of masonry infilled frames using digital image correlation. Mater Struct 47, 873–884 (2014). https://doi.org/10.1617/s11527-013-0099-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1617/s11527-013-0099-0

Keywords

Navigation