Skip to main content
Log in

Cement paste content and water absorption of recycled concrete coarse aggregates

  • Original Article
  • Published:
Materials and Structures Aims and scope Submit manuscript

Abstract

In this paper, we first show that the amount of residual cement paste in recycled concrete aggregates (RCA) depends on the initial paste content, on the mechanical properties of the initial cement paste and on the mechanical quality of the transition zone at the interface between the initial natural aggregates and cement paste. Our results suggest that water absorption of RCA at 24 h can be seen as the simple sum of the capillary absorption of both residual cement paste and initial natural aggregates. The absorption kinetics is similar to the capillary absorption of traditional uncrushed concretes but, on the industrial time scale of interest, is strongly affected by the size and configuration of the residual cement paste patches at the surface of the initial natural aggregates. We finally propose a tentative frame for a classification of RCA based on water absorption rate and water absorption capacity at 24 h.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Damtoft J, Lukasik J, Herfort D, Sorrentino D, Gartner E (2008) Sustainable development and climate change initiatives. Cem Concr Res 38:115–127

    Article  Google Scholar 

  2. European Environment Agency (2008) Effectiveness of environmental taxes and charges for managing sand, gravel and rock extraction in selected EU countries. EEA Report No. 2/2008. Schultz Grafisk, Copenhagen

    Google Scholar 

  3. Habert G, Bouzidi Y, Chen C, Jullien A (2010) Development of a depletion indicator for natural resources used in concrete. Resour Conserv Recycl 54:364–367

    Article  Google Scholar 

  4. Rao A, Jha KN, Misra S (2007) Use of aggregates from recycled construction and demolition waste in concrete. Resour Conserv Recycl 50:71–81

    Article  Google Scholar 

  5. Saint-Leger D (1827) Brevet d’invention et de perfectionnement remis à M. Saint Léger sur l’autorisation spéciale de M. Vicat. Archives nationale F 13 959, 25 May 1827

  6. Newman AJ (1946) The utilisation of brick rubble from demolished shelters as aggregates for concrete. J Inst Munic Eng 73:113–121

    Google Scholar 

  7. Graf O (1973) Uber Ziegelsplittbeton, Sandsteinbeton und Trummerschuttbeton. Die Bauwirtschaft 1948 (Germany). (Crushed brick concrete, sandstone concrete and rubble concrete, Trans, No. 73-1, January 1973). U.S. Army Engineer Waterways Experimental Station, C.E. Vicksburg

  8. Buck AD (1973) Recycled concrete, highway research record. Highway Research Board, Washington

    Google Scholar 

  9. Nixon PJ (1978) Recycled concrete as an aggregate for concrete—a review. Mater Struct 11:371–378

    Google Scholar 

  10. de Paw C (1983) Recycling of demolished concrete. Building Research Institute, Brussels

    Google Scholar 

  11. Bernier G (1984) Les bétons de démolition source de granulats. Bull Int Assoc Eng Geol 30:333–337

    Article  Google Scholar 

  12. de Juan MS, Gutiérrez PA (2009) Study on the influence of attached mortar content on the properties of recycled concrete aggregate. Constr Build Mater 23:872–877

    Article  Google Scholar 

  13. Abbas A, Fathifazl G, Fournier B, Isgor OB, Zavadil R, Razaqpur AG, Foo S (2009) Quantification of the residual mortar content in recycled concrete aggregates by image analysis. Mater Charact 60:716–728

    Article  Google Scholar 

  14. Abbas A, Fathifazl G, Isgor OB, Razaqpur AG, Fournier B, Foo S (2009) Durability of recycled aggregate concrete designed with equivalent mortar volume method. Cem Concr Compos 31:555–563

    Article  Google Scholar 

  15. Agrela F, Sánchez de Juan M, Ayuso J, Geraldes VL, Jiménez JR (2011) Limiting properties in the characterisation of mixed recycled aggregates for use in the manufacture of concrete. Constr Build Mater 25:3950–3955

    Article  Google Scholar 

  16. Etxeberria M, Vázquez E, Marí A, Barra M (2007) Influence of amount of recycled coarse aggregates and production process on properties of recycled aggregate concrete. Cem Concr Res 37:735–742

    Article  Google Scholar 

  17. Barra de Oliveira M, Vazquez E (1996) The influence of retained moisture in aggregates from recycling on the properties of new hardened concrete. Waste Manag 16:113–117

    Article  Google Scholar 

  18. Shima H, Tateyashiki H, Matsuhashi R, Yoshida Y (2005) An advanced concrete recycling technology and its applicability assessment through input–output analysis. J Adv Concr Technol 3:53–67

    Article  Google Scholar 

  19. Poon CS, Lam CS (2008) The effect of aggregate-to-cement ratio and types of aggregates on properties of pre-cast concrete blocks. Cem Concr Compos 30:283–289

    Article  Google Scholar 

  20. Gómez-Soberón JMV (2002) Porosity of recycled concrete with substitution of recycled concrete aggregate: an experimental study. Cem Concr Res 32:1301–1311

    Article  Google Scholar 

  21. Katz A (2003) Properties of concrete made with recycled aggregate from partially hydrated old concrete. Cem Concr Res 33:703–711

    Article  Google Scholar 

  22. Xiao J, Li J, Zhang C (2005) Mechanical properties of recycled aggregate concrete under uniaxial loading. Cem Concr Res 35:1187–1194

    Article  Google Scholar 

  23. Evangelista L, Brito J (2007) Mechanical behaviour of concrete made with fine recycled concrete aggregate. Cem Concr Compos 29:397–401

    Article  Google Scholar 

  24. López-Gayarre F, Serna S, Domingo-Cabo A, Serrano-López MA, López-Colina C (2009) Influence of recycled aggregate quality and proportioning criteria on recycled concrete properties. Waste Manag (Oxford) 29:3022–3028

    Article  Google Scholar 

  25. Poon CS, Shui ZH, Lam L, Fok H, Kou SC (2004) Influence of moisture states of natural and recycled aggregates on the slump and compressive strength of concrete. Cem Concr Res 34:31–36

    Article  Google Scholar 

  26. Barra de Oliveira M, Vasquez E (1996) The influence of retained moisture in aggregates from recycling on the properties of new hardened concrete. Wastes Manag 16:113–117

    Article  Google Scholar 

  27. Ajdukiewicz A, Kliszczewicz A (2002) Influence of recycled aggregates on mechanical properties of HS/HPC. Cement Concr Compos 24:269–279

    Article  Google Scholar 

  28. Montgomery DG (1998) Workability and compressive strength properties of concrete containing recycled concrete aggregate. In: Dhir RK, Henderson NA, Limbachiya MC (eds) Proceedings sustainable construction: use of recycled concrete aggregate, Thomas Telford, London, pp 289–296

  29. Tomosawa F, Noguchi T, Tamura M (2005) The way concrete recycling should be. J Adv Conc Technol 3:3–16

    Article  Google Scholar 

  30. Galbenis CT, Tsimas S (2006) Use of construction and demolition wastes as raw materials in cement clinker production. China Particuol 4:83–85

    Article  Google Scholar 

  31. Tam VWY, Gao XF, Tam CM, Chan CH (2008) New approach in measuring water absorption of recycled aggregates. Constr Build Mater 22:364–369

    Article  Google Scholar 

  32. Linß E, Mueller A (2004) High-performance sonic impulses—an alternative method for processing of concrete. Int J Miner Process 74:199–208

    Article  Google Scholar 

  33. Tsujino M, Noguchi T, Tamura M, Kanematsu M, Maruyama I (2007) Application of conventionally recycled coarse aggregates to concrete structure by surface modification treatment. J Adv Concr Technol 5:13–25

    Article  Google Scholar 

  34. Gonzalez-Fonteboa B, Martinez-Abella F (2008) Concretes with aggregates from demolition waste and silica fume, materials and mechanical properties. Build Environ 43:429–437

    Article  Google Scholar 

  35. Nealen A, Schenk S (1998) The influence of recycled aggregate core moisture on freshly mixed and hardened concretes properties. Darmst Concr Annu J 13

  36. Djerbi Tegguer A (2012) Determining the water absorption of recycled aggregates utilizing hydrostatic weighing approach. Constr Build Mater 27:112–116

    Article  Google Scholar 

  37. Abbas A, Fathifazl G, Isgor OB, Razaqpur AG, Fournier B, Foo S (2008) Proposed method for determining the residual mortar content of recycled concrete aggregates. J ASTM Int 5:12

    Google Scholar 

  38. Villain G, Thiery M, Platret Gérard (2007) Measurement methods of carbonation profiles in concrete: thermogravimetry, chemical analysis and gammadensimetry. Cem Concr Res 37:1182–1192

    Article  Google Scholar 

  39. Slegers PA, Paul G (1976) Carbonation of the hydration products of tricalcium silicate. Cem Concr Res 6(3):381–388

    Article  Google Scholar 

  40. Suzuki K, Nishikawa T, Ito S (1985) Formation and carbonation of C–S–H in water. Cem Concr Res 15(2):213–224

    Article  Google Scholar 

  41. Kobayashi K, Suzuki K, Uno Y (1994) Carbonation of concrete structures and decomposition of CSH. Cem Concr Res 24(1):55–61

    Article  Google Scholar 

  42. Waller V, d’Aloïa L, Cussigh F, Lecrux S (2004) Using the maturity method in concrete cracking control at early ages. Cem Concr Compos 26(5):589–599

    Article  Google Scholar 

  43. Delmi MMY, Aït-Mokhtar A, Amiri O (2006) Modelling the coupled evolution of hydration and porosity of cement based materials. Constr Build Mater 20:504–514

    Article  Google Scholar 

  44. Baroghel-Bouny V, Chaussadent T, Croquette G, Divet L, Gawsewitch J, Godin J, Henry D, Platret G, Villain G (2002) Caractéristiques microstructurales et propriétés relatives à la durabilité des bétons—Méthodes de mesure et d’essais de laboratoire—Méthodes d’essai no. 58, Techniques et Méthodes des LPC, LCPC, Février 2002, 88 p

  45. Ammouche A., Baroghel-Bouny V (2008) Dégradations générées par les traitements préalables aux mesures par intrusion de mercure et de perméabilité aux gaz. In Durabilité du béton armé et de ses constituants : maîtrise et approche performantielle, ERLPC OA62, pp 197–209

  46. EN 1097-6 (2006) Tests for mechanical and physical properties of aggregates—part 6: determination of particle density and water absorption

  47. British Standards BS 812-2 (1995) Testing aggregates. Methods for determination of density, British Standards Institution, London

    Google Scholar 

  48. de Larrard F (1999) Concrete mixture proportioning. E & FN Spon, London

    Google Scholar 

  49. Hall C, Hoff WD (2011) Water transport in brick, stone and concrete, 2nd edn. Taylor & Francis, London and New York

    Book  Google Scholar 

  50. Hall C (1989) Water sorptivity of mortars and concretes: a review. Mag Concr Res 41:147

    Article  Google Scholar 

  51. RILEM Recommendation (1994) 121-DRG Guidance for demolition and reuse of concrete and masonry. Specifications for concrete with recycle aggregates. J Mater Struct 27:557–559

    Article  Google Scholar 

  52. Kasai J, Kasai Y (1993) Guidelines and the present state of the reuse of demolished concrete in Japan. In: Lauritzen EK (ed) Demolition and reuse of concrete and masonry. Guidelines for demolition and reuse of concrete and masonry. RILEM, Odense, pp 93–104

    Google Scholar 

Download references

Acknowledgments

The authors would like to thank T. Sedran and F. de Larrard for providing some of the crushed aggregates. Support from the Agence Nationale de la Recherche (ANR) is also acknowledged (Grant No. ANR-09-JCJC-0074).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Roussel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Belin, P., Habert, G., Thiery, M. et al. Cement paste content and water absorption of recycled concrete coarse aggregates. Mater Struct 47, 1451–1465 (2014). https://doi.org/10.1617/s11527-013-0128-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1617/s11527-013-0128-z

Keywords

Navigation