Skip to main content
Log in

Influence of chemical and mineralogical composition of concrete aggregates on their behaviour at elevated temperature

  • Original Article
  • Published:
Materials and Structures Aims and scope Submit manuscript

Abstract

The nature of aggregates has an important influence on the behaviour of concrete at high temperature. The aggregates used in concrete are classified into two categories: siliceous (S) and calcareous (C). Most publications and Eurocode 2 Part 1–2 underline concrete containing C aggregates have a better thermal resistance in comparison to concrete with S aggregate. Recent studies show that rocks of identical chemical nature can have different behaviour during a temperature rise. Therefore, the improvement for understanding the thermal damage process of aggregates is necessary. An experimental study performed on three different aggregates (limestone, flint and quartzite) underwent heating–cooling cycles at 150, 300, 450, 600 and 750 °C is discussed in this paper. For a same S nature, the flint showed a spalling phenomenon from 300 to 500 °C, while quartzite had a good thermal stability up to 750 °C. C aggregates presented instability due to decarbonation/hydration after the heating/cooling cycle at 750 °C. The physico-chemical, mineralogical and microstructural evolutions of these aggregates with temperature were analysed to better understand the instability process of concrete aggregates. The evolution of flint damage is especially described by a series of observations of cracking from macroscopic to nanoscopic scale through microscopic scale. Aggregates have a high temperature behaviour very different depending on their physicochemical properties. Distinguishing aggregates according to their mineralogical nature only may not completely be sufficient to anticipate their thermal stability. The distinction between S versus C prescribed by the Eurocode 2 Part 1–2 for calculating concrete compressive strength at elevated temperature is not sufficiently precise or relevant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24

Similar content being viewed by others

References

  1. Aguilar Reyes BO (2004) Etude microstructurale des opales: application à la destabilisation par blanchissement. Thèse de doctorat de l’Université de Nantes

  2. Bamonte P, Cangiano S, Felicetti R, Gambarova PG, Billi R, Busnelli F, Quaglia M (2007) Thermomechanical characterization of concrete mixes suitable for the rehabilitation of fire-damaged tunnel linings. Stud Res 27:233–277

    Google Scholar 

  3. Bazant ZP, Kaplan MF (1996) Concrete at high temperature: material properties and mathematical models. Longman Group Limited, London

    Google Scholar 

  4. Brindley GW, Brown G (1980) Crystal structures of clay minerals and their X-ray identification. Mineralogical Society, London

    Google Scholar 

  5. Brodie-Linder N, Dosseh G, Alba-Simionesco C, Audonnet F, Impéror-Clerc M (2008) SBA-15 synthesis: are there lasting effects of temperature change within the first 10 min of TEOS polymerization? Mater Chem Phys 108:73–81

    Article  Google Scholar 

  6. CEN (2004) European Committee for Standardization EN 1992-1.2. In: Eurocode 2: design of concrete structures. CEN, Brussels

  7. Deer WA, Howie RA, Zussman J (1992) An introduction to the rock-forming minerals. Longman Scientific and Technical, London

    Google Scholar 

  8. Domanski M, Webb JA (1992) Effect of heat treatment on siliceous rocks used in prehistoric lithic technology. J Archaeol Sci 19:601–614

    Article  Google Scholar 

  9. Domanski M, Webb JA, Boland J (1994) Mechanical properties of stone artefacts materials and the effect of heat treatment. Archaeometry 36:177–208

    Article  Google Scholar 

  10. Domanski M, Webb J, Glaisher R, Gurba J, Libera J, Zakościelna A (2009) Heat treatment of Polish flints. J Archaeol Sci 36:1400–1408

    Article  Google Scholar 

  11. Dunlop D, Özdemir Ö (1997) Rock magnetism: fundamentals and frontiers. Cambridge University Press, Cambridge

    Book  Google Scholar 

  12. Dupain R, Lanchon R, Saint-Arroman JC (2000) Granulats, Sols, Ciments et Bétons, Caractérisation des matériaux de génie civil par les essais de laboratoire, 2nd edn. Asteilla, Paris

    Google Scholar 

  13. Flenniken JJ, Garrison EJ (1975) Thermally altered novaculite and stone tool manufacturing techniques. J Field Archaeol 2:125–131

    Article  Google Scholar 

  14. Fu YF, Wong YL, Tang CA, Poon CS (2004) Thermal induced stress and associated cracking in cement-based composite at elevated temperatures—Part I: thermal cracking around single inclusion. Cem Concr Compos 26:99–111

    Article  Google Scholar 

  15. Griffiths DR, Bergman CA, Clayton CJ, Ohnuma K, Robins GV, Seeley NJ (1987) Experimental investigation of the heat treatment of flint. Cambridge University Press, Cambridge, pp 43–52

    Google Scholar 

  16. Jouenne CA (1980) Traité de céramiques et matériaux minéraux. Septima, Paris

    Google Scholar 

  17. Khoury GA, Anderberg Y, Both K, Fellinger J, Hoj NP, Majorana C (2007) Fire design of concrete structures—materials, structures and modeling. State-of-art report. FIB Bulletin No 38

  18. Kodur VR, Sultan MA (1998) Structural behaviour of high strength concrete columns exposed to fire. In: International symposium on high performance and reactive powder concrete, Sherbrooke, pp 217–232

  19. Lowrie W (1990) Identification of ferromagnetic minerals in a rock by coercivity and unblocking temperature properties. Geophys Res Lett 17:159–162

    Article  Google Scholar 

  20. Lu AH, Li WC, Schmidt W, Schüth F (2005) Template synthesis of large pore ordered mesoporous carbon. Microporous Mesoporous Mater 80:117–128

    Article  Google Scholar 

  21. Meyer-Ottens C (1972) The question of spalling of concrete structural elements under fire loading. PhD Thesis, Technical University of Braunschweig, Germany

  22. Micheelsen H (1966) The structure of dark flint from Stevns Denmark. Meddelelser Dansk Geoliska Forening 16:285–368

    Google Scholar 

  23. Mindeguia JC, Pimienta P, Noumowé A, Kanema M (2010) Temperature, pore pressure and mass variation of concrete subjected to high temperature—experimental and numerical discussion on spalling risk. Cem Concr Res 40:477–487

    Article  Google Scholar 

  24. Murata KJ, Norman MB (1976) An index of crystallinity for quartz. Am J Sci 276:1120–1130

    Article  Google Scholar 

  25. Nakamoto K (1986) Infrared and Raman spectra of inorganic and coordination compounds, 4th edn. Wiley, New York

    Google Scholar 

  26. O’Reilly W (1984) Rock and mineral magnetism. Blackie, New York

    Book  Google Scholar 

  27. Patterson LW (1995) Thermal damage of chert. Lithic Technol 20:72–80

    Google Scholar 

  28. Price TD, Chappell S, Ives DJ (1982) Thermal alteration in mesolithic assemblages. Proc Prehist Soc Lond 48:467–485

    Google Scholar 

  29. Purdy BA (1974) Investigations concerning the thermal alteration of silica materials: an archaeological approach. Tebiwa 17:37–66

    MathSciNet  Google Scholar 

  30. Rayssac E, Auriol JC, Deneele D, Larrard F, Ledee V, Platret G (2009) Valorisation de laitiers d’aciérie LD pour les infrastructures routières. Bull Lab Ponts Chaussées 275:27–38

    Google Scholar 

  31. Robert F, Colina H (2009) The influence of aggregates on the mechanical characteristics of concrete exposed to fire. Mag Concr Res 61:311–321

    Article  Google Scholar 

  32. Schindler DL, Hatch JW, Hay CA, Bradt RC (1982) Aboriginal thermal alteration of a Central Pennsylvania Jasper. Am Antiq Wash DC 47:526–544

    Article  Google Scholar 

  33. Schneider U (1985) Properties of materials at high temperature—concrete. RILEM TC 44-PHT

  34. Silverstein RM, Bassler GC, Morrill TC (1991) Spectrometric identification of organic compounds, 5th edn. Wiley, New York

    Google Scholar 

  35. Verstraete J (2005) Approche multi-technique et multi-échelle d’étude des propriétés structurales des matériaux hétérogènes. Thèse de l’Université de Haute Alsace

  36. Xing Z, Beaucour AL, Hébert R, Noumowé A, Ledésert B (2011) Influence of the nature of aggregates on the behaviour of concrete subjected to elevated temperature. Cem Concr Res 41:392–402

    Article  Google Scholar 

  37. Zhuravlev LT (1989) Structurally bound water and surface characterization of amorphous silica. Pure Appl Chem 61:1969–1976

    Article  Google Scholar 

Download references

Acknowledgments

We thank the GSM Company for its cooperation of the materials supply. We thank Annelise Cousture and Lilian Cristofol of the Laboratory of Mechanics and Materials of Civil Engineering of Cergy-Pontoise University for their precious assistance during the XRD analysis and the SEM observations. We thank finally Dr. Nancy Brodie-Linder of the Department of Chemistry of Cergy-Pontoise University for her contribution on the IR and nitrogen adsorption analysis. We are grateful to Duncan Cree for his contribution to improve our French influenced English.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhi Xing.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xing, Z., Hébert, R., Beaucour, AL. et al. Influence of chemical and mineralogical composition of concrete aggregates on their behaviour at elevated temperature. Mater Struct 47, 1921–1940 (2014). https://doi.org/10.1617/s11527-013-0161-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1617/s11527-013-0161-y

Keywords

Navigation