Skip to main content
Log in

Geopolymers and other alkali activated materials: why, how, and what?

  • Original Article
  • Published:
Materials and Structures Aims and scope Submit manuscript

Abstract

This paper presents a review of alkali-activation technology, moving from the atomic scale and chemical reaction path modelling, towards macroscopic observables such as strength and durability of alkali-activated concretes. These properties and length scales are intrinsically interlinked, and so the chemistry of both low-calcium (‘geopolymer’) and high-calcium (blast furnace slag-derived) alkali-activated binders can be used as a starting point from which certain engineering properties may be discussed and explained. These types of materials differ in chemistry, binder properties, chemical structure and microstructure, and this leads to the specific material properties of each type of binder. The secondary binder products formed during alkali-activation (zeolites in low-Ca systems, mostly layered double hydroxides in alkali-activated slags) are of significant importance in determining the final properties of the materials, particularly in the context of durability. The production of highly durable concretes must remain the fundamental aim of research and development in the area of alkali-activation. However, to enable the term ‘highly durable’ to be defined in a satisfactory way, the underlying mechanisms of degradation—which are not always the same for alkali-activated binders as for Portland cement-based binders, and cannot always be tested in precisely the same ways—need to be further analysed and understood. The process of reviewing a topic such as this will inevitably raise just as many questions as answers, and it is the intention of this paper to present both, in appropriate context.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Provis JL, van Deventer JSJ, eds (2013) Alkali-activated materials: State-of-the-Art Report, RILEM TC 224-AAM. Springer/RILEM, Berlin

  2. Duxson P, Provis JL (2008) Designing precursors for geopolymer cements. J Am Ceram Soc 91(12):3864–3869

    Article  Google Scholar 

  3. Provis JL (2009) Activating solution chemistry for geopolymers. In: Provis JL, van Deventer JSJ (eds) Geopolymers: structure, processing, properties and industrial applications. Woodhead, Cambridge, pp 50–71

    Chapter  Google Scholar 

  4. Davidovits J (2008) Geopolymer chemistry and applications. Institut Géopolymère, Saint-Quentin

    Google Scholar 

  5. Kühl H (1908) Slag cement and process of making the same. US Patent 900,939

  6. Purdon AO (1940) The action of alkalis on blast-furnace slag. J Soc Chem Ind 59:191–202

    Article  Google Scholar 

  7. Vanooteghem M (2011) Duurzaamheid van beton met alkali-geactiveerde slak uit de jaren 50—Het Purdocement. M.Ing. Thesis, Universiteit Gent

  8. Glukhovsky VD (1959) Gruntosilikaty (soil silicates). Gosstroyizdat, Kiev

    Google Scholar 

  9. Krivenko PV (2002) Alkaline cements: from research to application. In: Lukey GC (ed) Geopolymers 2002: turn potential into profit, CD-ROM proceedings, Siloxo Pty. Ltd., Melbourne, Australia

  10. Husbands TB, Malone PG, Wakeley LD (1994) Performance of concretes proportioned with Pyrament blended cement, U.S. Army Corps of Engineers Construction Productivity Advancement Research Program, Report CPAR-SL-94-2, Vicksburg, MS

  11. Shi C, Krivenko PV, Roy DM (2006) Alkali-activated cements and concretes. Taylor & Francis, Abingdon

    Book  Google Scholar 

  12. van Deventer JSJ, Provis JL, Duxson P (2012) Technical and commercial progress in the adoption of geopolymer cement. Miner Eng 29:89–104

    Article  Google Scholar 

  13. Habert G, Roussel N (2011) A method for a fair allocation of the environmental impacts of supplementary cementitious materials. In: Palomo A (ed) XIII international congress on the chemistry of cement, CD-ROM, Madrid, Spain

  14. von Weizsäcker E, Hargroves K, Smith MH, Desha C, Stasinopoulos P (2009) Factor five: transforming the global economy through 80% improvements in resource productivity. Earthscan, London

    Google Scholar 

  15. McGuire EM, Provis JL, Duxson P, Crawford R (2011) Geopolymer concrete: is there an alternative and viable technology in the concrete sector which reduces carbon emissions? In: Concrete 2011, CD-ROM proceedings, Concrete Institute of Australia, Perth, Australia

  16. McLellan BC, Williams RP, Lay J, van Riessen A, Corder GD (2011) Costs and carbon emissions for geopolymer pastes in comparison to ordinary Portland cement. J Clean Prod 19(9–10):1080–1090

    Article  Google Scholar 

  17. Habert G, d’Espinose de Lacaillerie JB, Roussel N (2011) An environmental evaluation of geopolymer based concrete production: reviewing current research trends. J Clean Prod 19(11):1229–1238

    Article  Google Scholar 

  18. Duxson P, Provis JL, Lukey GC, van Deventer JSJ (2007) The role of inorganic polymer technology in the development of ‘Green concrete’. Cem Concr Res 37(12):1590–1597

    Article  Google Scholar 

  19. Duxson P, Provis JL, Lukey GC, Separovic F, van Deventer JSJ (2005) 29Si NMR study of structural ordering in aluminosilicate geopolymer gels. Langmuir 21(7):3028–3036

    Article  Google Scholar 

  20. Shi C (2003) Corrosion resistance of alkali-activated slag cement. Adv Cem Res 15(2):77–81

    Article  Google Scholar 

  21. Shi C, Stegemann JA (2000) Acid corrosion resistance of different cementing materials. Cem Concr Res 30(5):803–808

    Article  Google Scholar 

  22. Bernal SA, Rodríguez ED, Mejía de Gutierrez R, Gordillo M, Provis JL (2011) Mechanical and thermal characterisation of geopolymers based on silicate-activated metakaolin/slag blends. J Mater Sci 46(16):5477–5486

    Article  Google Scholar 

  23. Hooton RD (2008) Bridging the gap between research and standards. Cem Concr Res 38(2):247–258

    Article  Google Scholar 

  24. Duxson P, Fernández-Jiménez A, Provis JL, Lukey GC, Palomo A, van Deventer JSJ (2007) Geopolymer technology: the current state of the art. J Mater Sci 42(9):2917–2933

    Article  Google Scholar 

  25. Provis JL, van Deventer JSJ (2007) Geopolymerisation kinetics 2. Reaction kinetic modelling. Chem Eng Sci 62(9):2318–2329

    Article  Google Scholar 

  26. Provis JL, van Deventer JSJ (2007) Geopolymerisation kinetics: 1. In situ energy dispersive X-ray diffractometry. Chem Eng Sci 62(9):2309–2317

    Article  Google Scholar 

  27. Provis JL, Walls PA, van Deventer JSJ (2008) Geopolymerisation kinetics. 3. Effects of Cs and Sr salts. Chem Eng Sci 63(18):4480–4489

    Article  Google Scholar 

  28. Faimon J (1996) Oscillatory silicon and aluminum aqueous concentrations during experimental aluminosilicate weathering. Geochim Cosmochim Acta 60(15):2901–2907

    Article  Google Scholar 

  29. Provis JL, Duxson P, Lukey GC, Separovic F, Kriven WM, van Deventer JSJ (2005) Modeling speciation in highly concentrated alkaline silicate solutions. Ind Eng Chem Res 44(23):8899–8908

    Article  Google Scholar 

  30. Knight CTG, Balec RJ, Kinrade SD (2007) The structure of silicate anions in aqueous alkaline solutions. Angew Chem Int Ed 46:8148–8152

    Article  Google Scholar 

  31. Lothenbach B, Gruskovnjak A (2007) Hydration of alkali-activated slag: thermodynamic modelling. Adv Cem Res 19(2):81–92

    Article  Google Scholar 

  32. Chen W, Brouwers H (2007) The hydration of slag, part 1: reaction models for alkali-activated slag. J Mater Sci 42(2):428–443

    Article  Google Scholar 

  33. Richardson IG (2004) Tobermorite/jennite- and tobermorite/calcium hydroxide-based models for the structure of C–S–H: applicability to hardened pastes of tricalcium silicate, β-dicalcium silicate, Portland cement, and blends of Portland cement with blast-furnace slag, metakaolin, or silica fume. Cem Concr Res 34(9):1733–1777

    Article  Google Scholar 

  34. Myers RJ, Bernal SA, San Nicolas R, Provis JL (2013) Generalized structural description of calcium-sodium aluminosilicate hydrate gels: the crosslinked substituted tobermorite model. Langmuir 29(17):5294–5306

    Article  Google Scholar 

  35. White CE, Provis JL, Kearley GJ, Riley DP, van Deventer JSJ (2011) Density functional modelling of silicate and aluminosilicate dimerisation solution chemistry. Dalton Trans 40(6):1348–1355

    Article  Google Scholar 

  36. White CE, Provis JL, Proffen T, van Deventer JSJ (2011) Quantitative mechanistic modeling of silica solubility and precipitation during the initial period of zeolite synthesis. J Phys Chem C 115(20):9879–9888

    Article  Google Scholar 

  37. White CE, Provis JL, Proffen T, van Deventer JSJ (2012) Molecular mechanisms responsible for the structural changes occurring during geopolymerization: multiscale simulation. AIChE J 58(7):2241–2253

    Article  Google Scholar 

  38. Zhang Z, Wang H, Provis JL, Bullen F, Reid A, Zhu Y (2012) Quantitative kinetic and structural analysis of geopolymers: part 1. The activation of metakaolin with sodium hydroxide. Thermochim Acta 539:23–33

    Article  Google Scholar 

  39. Zhang Z, Provis JL, Wang H, Bullen F, Reid A (2013) Quantitative kinetic and structural analysis of geopolymers: part 2. Thermodynamics of sodium silicate activation of metakaolin. Thermochim Acta 565:163–171

    Article  Google Scholar 

  40. Alonso S, Palomo A (2001) Calorimetric study of alkaline activation of calcium hydroxide-metakaolin solid mixtures. Cem Concr Res 31(1):25–30

    Article  Google Scholar 

  41. Granizo ML, Blanco MT (1998) Alkaline activation of metakaolin—an isothermal conduction calorimetry study. J Therm Anal 52(3):957–965

    Article  Google Scholar 

  42. Puligilla S, Mondal P (2013) Role of slag in microstructural development and hardening of fly ash-slag geopolymer. Cem Concr Res 43:70–80

    Article  Google Scholar 

  43. Shi C, Day RL (1995) A calorimetric study of early hydration of alkali-slag cements. Cem Concr Res 25(6):1333–1346

    Article  Google Scholar 

  44. Bernal SA, Provis JL, Mejía de Gutierrez R, Rose V (2011) Evolution of binder structure in sodium silicate-activated slag-metakaolin blends. Cem Concr Compos 33(1):46–54

    Article  Google Scholar 

  45. Provis JL, Rees CA (2009) Geopolymer synthesis kinetics. In: Provis JL, van Deventer JSJ (eds) Geopolymers: structure, processing, properties and industrial applications. Woodhead, Cambridge, pp 118–136

    Chapter  Google Scholar 

  46. Provis JL, van Deventer JSJ (2007) Direct measurement of the kinetics of geopolymerisation by in situ energy dispersive X-ray diffractometry. J Mater Sci 42(9):2974–2981

    Article  Google Scholar 

  47. White CE, Page K, Henson NJ, Provis JL (2013) In situ synchrotron X-ray pair distribution function analysis of the early stages of gel formation in metakaolin-based geopolymers. Appl Clay Sci 73:17–25

    Article  Google Scholar 

  48. White CE, Provis JL, Bloomer B, Henson NJ, Page K (2013) In situ X-ray pair distribution function analysis of geopolymer gel nanostructure formation kinetics. Phys Chem Chem Phys 15(22):8573–8582

    Article  Google Scholar 

  49. Steins P, Poulesquen A, Diat O, Frizon F (2012) Structural evolution during geopolymerization from an early age to consolidated material. Langmuir 28(22):8502–8510

    Article  Google Scholar 

  50. White CE, Provis JL, Llobet A, Proffen T, van Deventer JSJ (2011) Evolution of local structure in geopolymer gels: an in situ neutron pair distribution function analysis. J Am Ceram Soc 94(10):3532–3539

    Article  Google Scholar 

  51. Rees CA, Provis JL, Lukey GC, van Deventer JSJ (2007) In situ ATR-FTIR study of the early stages of fly ash geopolymer gel formation. Langmuir 23(17):9076–9082

    Article  Google Scholar 

  52. Rees CA, Provis JL, Lukey GC, van Deventer JSJ (2008) The mechanism of geopolymer gel formation investigated through seeded nucleation. Colloids Surf A 318(1–3):97–105

    Article  Google Scholar 

  53. Hajimohammadi A, Provis JL, van Deventer JSJ (2011) Time-resolved and spatially-resolved infrared spectroscopic observation of seeded nucleation controlling geopolymer gel formation. J Colloid Interface Sci 357(2):384–392

    Article  Google Scholar 

  54. Hajimohammadi A, Provis JL, van Deventer JSJ (2010) The effect of alumina release rate on the mechanism of geopolymer gel formation. Chem Mater 22(18):5199–5208

    Article  Google Scholar 

  55. Hajimohammadi A, Provis JL, van Deventer JSJ (2011) The effect of silica availability on the mechanism of geopolymerisation. Cem Concr Res 41(3):210–216

    Article  Google Scholar 

  56. Provis JL, Lukey GC, van Deventer JSJ (2005) Do geopolymers actually contain nanocrystalline zeolites?—a reexamination of existing results. Chem Mater 17(12):3075–3085

    Article  Google Scholar 

  57. Provis JL, Duxson P, Lukey GC, van Deventer JSJ (2005) Statistical thermodynamic model for Si/Al ordering in amorphous aluminosilicates. Chem Mater 17(11):2976–2986

    Article  Google Scholar 

  58. Loewenstein W (1954) The distribution of aluminum in the tetrahedra of silicates and aluminates. Am Miner 39(1–2):92–96

    Google Scholar 

  59. Davidovits J (1991) Geopolymers—inorganic polymeric new materials. J Therm Anal 37(8):1633–1656

    Article  Google Scholar 

  60. Rowles MR, Hanna JV, Pike KJ, Smith ME, O’Connor BH (2007) 29Si, 27Al, 1H and 23Na MAS NMR study of the bonding character in aluminosilicate inorganic polymers. Appl Magn Reson 32:663–689

    Article  Google Scholar 

  61. Barbosa VFF, MacKenzie KJD, Thaumaturgo C (2000) Synthesis and characterisation of materials based on inorganic polymers of alumina and silica: sodium polysialate polymers. Int J Inorg Mater 2(4):309–317

    Article  Google Scholar 

  62. Bernal SA, Provis JL, Walkley B, San Nicolas R, Gehman JD, Brice DG, Kilcullen A, Duxson P, van Deventer JSJ (2013) Gel nanostructure in alkali-activated binders based on slag and fly ash, and effects of accelerated carbonation. Cem Concr Res 53:127–144

    Article  Google Scholar 

  63. Ruiz-Santaquiteria C, Skibsted J, Fernández-Jiménez A, Palomo A (2012) Alkaline solution/binder ratio as a determining factor in the alkaline activation of aluminosilicates. Cem Concr Res 42(9):1242–1251

    Article  Google Scholar 

  64. Egami T (1990) Atomic correlations in non-periodic matter. Mater Trans JIM 31(3):163–176

    Google Scholar 

  65. Meral C, Benmore CJ, Monteiro PJM (2011) The study of disorder and nanocrystallinity in C–S–H, supplementary cementitious materials and geopolymers using pair distribution function analysis. Cem Concr Res 41(7):696–710

    Article  Google Scholar 

  66. White CE (2012) Pair distribution function analysis of amorphous geopolymer precursors and binders: the importance of complementary molecular simulation. Z Krist 227:304–312

    Article  Google Scholar 

  67. Bell JL, Sarin P, Provis JL, Haggerty RP, Driemeyer PE, Chupas PJ, van Deventer JSJ, Kriven WM (2008) Atomic structure of a cesium aluminosilicate geopolymer: a pair distribution function study. Chem Mater 20(14):4768–4776

    Article  Google Scholar 

  68. White CE, Provis JL, Proffen T, van Deventer JSJ (2010) The effects of temperature on the local structure of metakaolin-based geopolymer binder: a neutron pair distribution function investigation. J Am Ceram Soc 93(10):3486–3492

    Article  Google Scholar 

  69. Bell JL, Sarin P, Driemeyer PE, Haggerty RP, Chupas PJ, Kriven WM (2008) X-ray pair distribution function analysis of a metakaolin-based, KAlSi2O6·5.5H2O inorganic polymer (geopolymer). J Mater Chem 18:5974–5981

    Article  Google Scholar 

  70. Duxson P, Lukey GC, van Deventer JSJ (2006) Evolution of gel structure during thermal processing of Na-geopolymer gels. Langmuir 22(21):8750–8757

    Article  Google Scholar 

  71. Skinner LB, Chae SR, Benmore CJ, Wenk HR, Monteiro PJM (2010) Nanostructure of calcium silicate hydrates in cements. Phys Rev Lett 104:195502

    Article  Google Scholar 

  72. Soyer-Uzun S, Chae SR, Benmore CJ, Wenk H-R, Monteiro PJM (2012) Compositional evolution of calcium silicate hydrate (C–S–H) structures by total X-ray scattering. J Am Ceram Soc 95(2):793–798

    Article  Google Scholar 

  73. White CE, Provis JL, Proffen T, Riley DP, van Deventer JSJ (2010) Combining density functional theory (DFT) and pair distribution function (PDF) analysis to solve the structure of metastable materials: the case of metakaolin. Phys Chem Chem Phys 12(13):3239–3245

    Article  Google Scholar 

  74. White CE, Provis JL, Proffen T, Riley DP, van Deventer JSJ (2010) Density functional modeling of the local structure of kaolinite subjected to thermal dehydroxylation. J Phys Chem A 114(14):4988–4996

    Article  Google Scholar 

  75. White CE, Provis JL, Gordon LE, Riley DP, Proffen T, van Deventer JSJ (2011) The effect of temperature on the local structure of kaolinite intercalated with potassium acetate. J Am Ceram Soc 23(2):188–199

    Google Scholar 

  76. Reiss CA, Kharchenko A, Gateshki M (2012) On the use of laboratory X-ray diffraction equipment for pair distribution function (PDF) studies. Z Kristall 227(5):257–261

    Article  Google Scholar 

  77. Aly Z, Vance ER, Perera DS, Hanna JV, Griffith CS, Davis J, Durce D (2008) Aqueous leachability of metakaolin-based geopolymers with molar ratios of Si/Al = 1.5–4. J Nucl Mater 378(2):172–179

    Article  Google Scholar 

  78. Duxson P, Lukey GC, Separovic F, van Deventer JSJ (2005) The effect of alkali cations on aluminum incorporation in geopolymeric gels. Ind Eng Chem Res 44(4):832–839

    Article  Google Scholar 

  79. Duxson P, Provis JL, Lukey GC, van Deventer JSJ, Separovic F, Gan ZH (2006) 39K NMR of free potassium in geopolymers. Ind Eng Chem Res 45(26):9208–9210

    Article  Google Scholar 

  80. Bortnovsky O, Dědeček J, Tvarůžková Z, Sobalík Z, Šubrt J (2008) Metal ions as probes for characterization of geopolymer materials. J Am Ceram Soc 91(9):3052–3057

    Article  Google Scholar 

  81. Najafi Kani E, Allahverdi A, Provis JL (2012) Efflorescence control in geopolymer binders based on natural pozzolan. Cem Concr Compos 34(1):25–33

    Article  Google Scholar 

  82. Škvára F, Kopecký L, Myšková L, Šmilauer V, Alberovská L, Vinšová L (2009) Aluminosilicate polymers—influence of elevated temperatures, efflorescence. Ceram Silik 53(4):276–282

    Google Scholar 

  83. Smith MA, Osborne GJ (1977) Slag/fly ash cements. World Cem Technol 1(6):223–233

    Google Scholar 

  84. Provis JL, Harrex RM, Bernal SA, Duxson P, van Deventer JSJ (2012) Dilatometry of geopolymers as a means of selecting desirable fly ash sources. J Non Cryst Solids 358(16):1930–1937

    Article  Google Scholar 

  85. Palomo A, Alonso S, Fernández-Jiménez A, Sobrados I, Sanz J (2004) Alkaline activation of fly ashes: NMR study of the reaction products. J Am Ceram Soc 87(6):1141–1145

    Article  Google Scholar 

  86. Shigemoto N, Sugiyama S, Hayashi H, Miyaura K (1995) Characterization of Na–X, Na–A, and coal fly ash zeolites and their amorphous precursors by IR, MAS NMR and XPS. J Mater Sci 30(22):5777–5783

    Article  Google Scholar 

  87. Provis JL, Duxson P, van Deventer JSJ (2010) The role of particle technology in developing sustainable construction materials. Adv Powder Technol 21(1):2–7

    Article  Google Scholar 

  88. Lloyd RR (2009) Accelerated ageing of geopolymers. In: Provis JL, van Deventer JSJ (eds) Geopolymers: structure, processing, properties and industrial applications. Woodhead, Cambridge, pp 139–166

    Chapter  Google Scholar 

  89. De Silva P, Sagoe-Crentsil K (2008) Medium-term phase stability of Na2O–Al2O3–SiO2–H2O geopolymer systems. Cem Concr Res 38(6):870–876

    Article  Google Scholar 

  90. Shi C, Day RL (1996) Selectivity of alkaline activators for the activation of slags. Cem Concr Aggress 18(1):8–14

    Article  Google Scholar 

  91. Richardson IG, Brough AR, Groves GW, Dobson CM (1994) The characterization of hardened alkali-activated blast-furnace slag pastes and the nature of the calcium silicate hydrate (C–S–H) paste. Cem Concr Res 24(5):813–829

    Article  Google Scholar 

  92. Ben Haha M, Le Saout G, Winnefeld F, Lothenbach B (2011) Influence of activator type on hydration kinetics, hydrate assemblage and microstructural development of alkali activated blast-furnace slags. Cem Concr Res 41(3):301–310

    Article  Google Scholar 

  93. Ismail I, Bernal SA, Provis JL, San Nicolas R, Hamdan S, van Deventer JSJ (2014) Modification of phase evolution in alkali-activated blast furnace slag by the incorporation of fly ash. Cem Concr Compos 45:125–135

    Article  Google Scholar 

  94. Wang SD, Scrivener KL (1995) Hydration products of alkali-activated slag cement. Cem Concr Res 25(3):561–571

    Article  Google Scholar 

  95. Krivenko PV (1994) Alkaline cements. In: Krivenko PV (ed) Proceedings of the first international conference on alkaline cements and concretes, Kiev, Ukraine, VIPOL Stock Company, pp 11–129

  96. Gruskovnjak A, Lothenbach B, Holzer L, Figi R, Winnefeld F (2006) Hydration of alkali-activated slag: comparison with ordinary Portland cement. Adv Cem Res 18(3):119–128

    Article  Google Scholar 

  97. Hong S-Y, Glasser FP (2002) Alkali sorption by C–S–H and C–A–S–H gels: part II. Role of alumina. Cem Concr Res 32(7):1101–1111

    Article  Google Scholar 

  98. García-Lodeiro I, Palomo A, Fernández-Jiménez A, Macphee DE (2011) Compatibility studies between N–A–S–H and C–A–S–H gels. Study in the ternary diagram Na2O–CaO–Al2O3–SiO2–H2O. Cem Concr Res 41(9):923–931

    Article  Google Scholar 

  99. Puertas F, Fernández-Jiménez A, Blanco-Varela MT (2004) Pore solution in alkali-activated slag cement pastes. Relation to the composition and structure of calcium silicate hydrate. Cem Concr Res 34:139–148

    Article  Google Scholar 

  100. Bernal SA, San Nicolas R, Provis JL, Mejía de Gutiérrez R, van Deventer JSJ (2013) Natural carbonation of aged alkali-activated slag concretes. Mater Struct. doi:10.1617/s11527-11013-10089-11522 (in press)

    Google Scholar 

  101. Bernal SA, Provis JL, Brice DG, Kilcullen A, Duxson P, van Deventer JSJ (2012) Accelerated carbonation testing of alkali-activated binders significantly underestimates service life: the role of pore solution chemistry. Cem Concr Res 42(10):1317–1326

    Article  Google Scholar 

  102. Bakharev T, Sanjayan JG, Cheng YB (2001) Resistance of alkali-activated slag concrete to alkali-aggregate reaction. Cem Concr Res 31(2):331–334

    Article  Google Scholar 

  103. Fernández-Jiménez A, Puertas F (2002) The alkali-silica reaction in alkali-activated granulated slag mortars with reactive aggregate. Cem Concr Res 32(7):1019–1024

    Article  Google Scholar 

  104. Gifford PM, Gillott JE (1996) Alkali-silica reaction (ASR) and alkali-carbonate reaction (ACR) in activated blast furnace slag cement (ABFSC) concrete. Cem Concr Res 26(1):21–26

    Article  Google Scholar 

  105. Kupwade-Patil K, Allouche EN (2013) Impact of alkali silica reaction on fly ash-based geopolymer concrete. J Mater Civ Eng 25(1):131–139

    Article  Google Scholar 

  106. Lloyd RR, Provis JL, van Deventer JSJ (2010) Pore solution composition and alkali diffusion in inorganic polymer cement. Cem Concr Res 40(9):1386–1392

    Article  Google Scholar 

  107. Ismail I, Bernal SA, Provis JL, Hamdan S, van Deventer JSJ (2013) Microstructural changes in alkali activated fly ash/slag geopolymers with sulfate exposure. Mater Struct 46(3):361–373

    Article  Google Scholar 

Download references

Acknowledgments

The work described here has been made possible through collaboration with many people over a number of years. A good share of the credit for the RILEM Robert L’Hermite Medal certainly belongs to the colleagues and students with whom I have worked over the past decade, and so I thank them for their input and hard work which has enabled me to write this review. First and foremost, I owe a major debt to Professor Jannie van Deventer, who has been my mentor, supervisor and longstanding collaborator (from both academic and industrial perspectives), and has given his unstinting support in every aspect of my career. My students and postdocs, I hope you have been able to learn from me some fraction of the amount I have learned from you, and I hope that my descriptions of your work have done justice to it. My collaborators and colleagues, in Melbourne, Sheffield, and all over the world (including RILEM TCs 224-AAM, 238-SCM, and 247-DTA), who have shared time, expertise, ideas and data with me, this has always been a pleasure. Among these people, particular thanks are due to Dr Peter Duxson, with whom discussions have always been thought-provoking, productive and fun, and have led (directly or indirectly) to much of the science described in this review. To those who have given me opportunities—and particularly the chance to take on a Chair at the University of Sheffield—I am truly grateful. To the agencies who have provided financial support, particularly the Australian Research Council through numerous projects, and also Zeobond as a key industry partner in much of my work, I hope that I have made good use of the money! Finally, and most importantly, to the person who proofreads and reality-checks all of my papers, my wife, collaborator, inspiration and partner in everything I do, Dr Susan A. Bernal—it’s all for you.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John L. Provis.

Additional information

This paper corresponds to the 2013 Robert L’Hermite Medal lecture of Prof. John L. Provis at the 2013 RILEM Annual Week in Paris, France. He was awarded the medal in recognition of his outstanding contributions to the research and development of geopolymers and other construction materials. His research centres on the development, characterisation and exploitation of advanced and non-traditional cement and concrete technology. Many of his projects involve alkali-activated and geopolymer binders for use in infrastructure and waste immobilisation applications.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Provis, J.L. Geopolymers and other alkali activated materials: why, how, and what?. Mater Struct 47, 11–25 (2014). https://doi.org/10.1617/s11527-013-0211-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1617/s11527-013-0211-5

Keywords

Navigation