Skip to main content
Log in

Generalized softened variable angle truss-model for reinforced concrete beams under torsion

  • Original Article
  • Published:
Materials and Structures Aims and scope Submit manuscript

Abstract

A new analytical model based on a refinement of the variable angle truss-model (VATM) is developed to predict the entire torque–twist curve of reinforced concrete beams under torsion, including ultimate and cracking states. The refinement is based on the incorporation of the tensile stress–strain relationship of the concrete into the VATM. The new analytical model is called generalized softened variable angle truss-model (GSVATM). The new formulation and the calculation procedure for GSVATM are presented and the theoretical predictions are compared with the results from reported tests. It is shown that the new analytical model described in this paper gives good predictions when compared with the experimental data reported in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Rausch E (1929) Berechnung des Eisenbetons gegen Verdrehung (Design of reinforced concrete in torsion). Ph.D. Thesis, Berlin, p 53 (in German)

  2. Andersen P (1935) Experiments with concrete in torsion. Trans ASCE 100(1935):949–983

    Google Scholar 

  3. Cowan HJ (1950) Elastic theory for torsional strength of rectangular reinforced concrete beams. Mag Concr Res 2(4):3–8

    Article  MathSciNet  Google Scholar 

  4. Walsh PF, Collins MP, Archer FE, Hall AS (1966) The ultimate strength design of rectangular reinforced concrete beams subjected to combined torsion, bending and shear. Civil Engineering Transaction, CE8 (2): 143–157

  5. Lampert P, Thurlimann B (1969) Torsionsversuche an Stahlbetonbalken (Torsion tests of reinforced concrete beams). Bericht, Nr. 6506-2, Institut fur Baustatik, ETH, Zurich, p 101 (in German)

  6. Elfgren L (1972) Reinforced concrete beams loaded in combined torsion, bending and shear publication 71:3 division of concrete structures. Chalmers University of Technology, Goteborg, p 249

    Google Scholar 

  7. Elfgren L (1979) Torsion-bending-shear in concrete beams: a kinematic model. Plasticity in reinforced concrete, a workshop arranged in Copenhagen by the International Association for Bridge and Structural Engineering (IABSE). Reports of the working commissions, vol 29, pp 111–118

  8. Müller P (1976) Failure Mechanisms for Reinforced Concrete Beams in Torsion and Bending. International Association for Bridge and Structural Engineering (IABSE). Publications vol 36–11. Zürich, pp 147–163

  9. Mitchell D, Collins MP (1974) Diagonal compression field theory: a rational model for structural concrete in pure torsion. ACI Journal 71(8):396–408

    Google Scholar 

  10. Collins MP, Mitchell D (1980) Shear and torsion design of prestressed and non-prestressed concrete beams. J Prestressed Concr Inst Proc 25(5):32–100

    Google Scholar 

  11. Hsu TT, Mo YL (1985) Softening of concrete in torsional members-theory and tests. J American Concr Inst Proc 82(3):290–303

    Google Scholar 

  12. Rahal KN, Collins MP (1996) Simple model for predicting torsional strength of reinforced and prestressed concrete sections. J American Concr Inst Proc 93(6):658–666

    Google Scholar 

  13. Bhatti MA, Almughrabi A (1996) Refined model to estimate torsional strength of reinforced Concrete beams. J American Concr Inst Proc 93(5):614–622

    Google Scholar 

  14. Wang W, Hsu CTT (1997) Limit analysis of reinforced concrete beams subjected to pure torsion. J Str Eng 123(1):86–94

    Article  Google Scholar 

  15. Hsu TTC (1984) Torsion of reinforced concrete. Van Nostrand Reinhold Company, New York

  16. Bernardo LFA, Andrade JMA, Lopes SMR (2012) Softened truss model for reinforced NSC and HSC beams under torsion: a comparative study. Eng Struct 42:278–296

    Article  Google Scholar 

  17. Bernardo LFA, Lopes SMR (2008) Behavior of concrete beams under torsion-NSC plain and hollow beams. Mater Str 41(6):1143–1167

    Article  Google Scholar 

  18. Bernardo LFA, Lopes SMR (2011) Theoretical behavior of HSC sections under torsion. Eng Str 33(12):3702–3714

    Article  Google Scholar 

  19. Bernardo LFA, Andrade JMA, Lopes SMR (2012) Modified variable angle truss-model for torsion in reinforced concrete beams. Mater Str 45(12):1877–1902

    Article  Google Scholar 

  20. Jeng C-H, Hsu TTC (2009) A softened membrane model for torsion in reinforced concrete members. Eng Str 31:1944–1954

    Article  Google Scholar 

  21. Mostofinejad D, Behzad TS (2011) Nonlinear modeling of RC beams subjected to torsion using smeared crack model. In Proceedings of the twelfth East Asia-Pasific conference on structural engineering and construction (EASEC-12), Hong Kong SAR, China, 26–28 January, 2011. Procedia Engineering 14: 1447–1454

  22. AlNuaimi AS, Al-Jabri KS, Hago A (2008) Comparison between solid and hollow reinforced concrete beams. Mater Str 41(2):269–286

    Article  Google Scholar 

  23. Navarro Gregori J, Sosa PM, Prada MAF, Filippou FC (2007) A 3D numerical model for reinforced and prestressed concrete elements subjected to combined axial, bending, shear and torsion loading. Eng Str 29(12):3404–3419

    Article  Google Scholar 

  24. Valipour HR, Foster SF (2010) Nonlinear reinforced concrete frame element with torsion. Eng Str 32(4):988–1002

    Article  Google Scholar 

  25. Rahal KN, Collins MP (2003) Combined torsion and bending in reinforced and prestressed concrete beams. ACI Str J 100(2):157–165

    Google Scholar 

  26. Bairan Garcia JM, Mari Bernat AR (2007) Shear-bending-torsion interaction in structural concrete members: a nonlinear coupled sectional approach. Archives Comput Methods Eng 14(3):249–278

    Article  MATH  Google Scholar 

  27. Bairan Garcia JM, Mari Bernat AR (2006) Coupled model for the non-linear analysis of anisotropic sections subjected to general 3D loading part 1: theoretical formulation. Comput Str 84(31–32):2254–2263

    Article  Google Scholar 

  28. Bairan Garcia JM, Mari Bernat AR (2006) Coupled model for the nonlinear analysis of sections made of anisotropic materials, subjected to general 3D loading part 2: implementation and validation. Comput Str 84(31–32):2264–2276

    Article  Google Scholar 

  29. Bredt R (1896) Kritische Bemerkungen zur drehungselastizitat. Zeitschrift des Vereines Deutscher Ingenieure 40(28):785–790 in German

    Google Scholar 

  30. Vecchio FJ, Collins MP (1981) Stress-strain characteristics of reinforced concrete in pure shear IABSE colloquium, advanced mechanics of reinforced concrete, Delft Final report, pp 211–225

  31. Belarbi A, Hsu TC (1991) Constitutive laws of softened concrete in biaxial tension-compression. Research Report UHCEE 91-2. University of Houston, Houston

  32. Belarbi A, Hsu TC (1994) Constitutive laws of concrete in tension and reinforcing bars stiffened by concrete. Str J American Concr Inst 91(4):465–474

    Google Scholar 

  33. Bernardo LFA, Andrade JMA, Oliveira LAP (2013) Reinforced and prestressed concrete hollow beams under torsion. J Civil Eng Manag 19(S1):S141–S152

    Article  Google Scholar 

  34. Jeng CH, Peng X, Wong YL (2011) Strain gradient effect in RC elements subjected to torsion. Mag Concr Res 63(5):343–356

    Article  Google Scholar 

  35. Bernardo LFA, Lopes SMR (2009) Torsion in HSC hollow beams: strength and ductility analysis. ACI Str J 106(1):39–48

    Google Scholar 

  36. NP EN 1992-1-1 Eurocode 2: design of concrete structures-Part 1: general rules and rules for buildings, March 2010

  37. Fang I-K, Shiau J-K (2004) Torsional behavior of normal- and high-strength concrete beams. ACI Str J 101(3):304–313

    Google Scholar 

  38. Hsu TTC (1968) Torsion of structural concrete-behaviour of reinforced concrete rectangular members, torsion of structural concrete, sp-18. American Concrete Institute, Detroit, pp 261–306

    Google Scholar 

  39. McMullen AE, Rangan BV (1978) Pure torsion in rectangular sections: a re-examination. J American Concr Inst 75(10):511–519

    Google Scholar 

  40. Leonhardt F, Schelling G (1974) Torsionsversuche an Stahl Betonbalken. Bulletin No. 239, Deutscher Ausschuss fur Stahlbeton, Berlin (in German)

  41. Jeng CH, Chiu H-J, Peng S-F (2013) Design formulas for cracking torque and twist in hollow reinforced concrete members. ACI Str J 110(3):457–468

    Google Scholar 

  42. Bernardo LFA, Lopes SMR (2013) Plastic analysis and twist capacity of high-strength concrete hollow beams under pure torsion. Eng Str 49:190–201

    Article  Google Scholar 

  43. Zhang LX, Hsu TC (1998) Behaviour and analysis of 100 MPa concrete membrane elements. J Str Eng 124(1):24–34

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. F. A. Bernardo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bernardo, L.F.A., Andrade, J.M.A. & Nunes, N.C.G. Generalized softened variable angle truss-model for reinforced concrete beams under torsion. Mater Struct 48, 2169–2193 (2015). https://doi.org/10.1617/s11527-014-0301-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1617/s11527-014-0301-z

Keywords

Navigation