Skip to main content
Log in

Characterising the influence of bitumen emulsion on asphalt mixture performance

  • Original Article
  • Published:
Materials and Structures Aims and scope Submit manuscript

Abstract

To make the road infrastructure more competitive and sustainable, a long-term transition to cold asphalt technologies, especially those which involve bitumen emulsions is necessary. However, to minimise the compromise on mechanical performance compared to the conventional technologies, the objective of this research was to propose a comprehensive method for evaluating the contribution of the bitumen emulsion to the asphalt mixture properties. The variable influence of the aggregate was eliminated by standardising the aggregate composition of bitumen emulsion mortar (BEM), and the BEM mixtures were tested with various emulsion-related parameters. The change in physical and indirect tensile test-based mechanical properties was measured over time on statically-compacted cylindrical specimens in pre-defined curing conditions. Almost the entire change in physical and volumetric properties occurred in the first 28 days of curing. As a rule, the mixtures with higher emulsion content were more sensitive to the bitumen viscosity, and the harder bitumens resulted in higher indirect tensile strengths. The measured change in the bulk densities and the voids over time was compared with calculated theoretical values to which the lowest emulsion contents had the fastest convergence. Furthermore, coefficients for estimating the mechanical parameters based on the 28 day-reference values were determined, and the standard BEM mixture composition was adopted. Finally, this evaluation approach showed a good potential of becoming a standard method for testing and improving the bitumen emulsion properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. European Commission (2011) White Paper on transport. Publications Office of the European Union, Luxembourg

    Google Scholar 

  2. European Environment Agency (2008) Climate for a transport change. Office for Official Publications of the European Communities, EEA Report No 1/2008, Luxembourg

  3. European Commission (2011) White paper—roadmap to a single european transport area—towards a competitive and resource efficient transport system, Brussels

  4. European Environment Agency (2011) Laying the foundations for greener transport. Office for Official Publications of the European Union, EEA Report No 7/2011, Luxembourg

  5. Wess JA, Olsen LD, Sweeney MH (2004) Concise international chemical assessment document 59—asphalt (bitumen). World Health Organization, Geneva

    Google Scholar 

  6. Agostini M, Fransman W, De Vocht F, Van Wendel De Joode B, Kromhout H (2011) Assessment of dermal exposure to bitumen condensate among road paving and mastic crews with an observational method. Ann Occup Hyg 55(6):578–590

    Article  Google Scholar 

  7. Butler MA et al (2000) Health effects of occupational exposure to asphalt. National Institute for Occupational Safety and Health, DHHS (NIOSH) Publication No. 2001-110, Cincinnati

  8. European Environment Agency (2011) Earnings, jobs and innovation: the role of recycling in a green economy. Office for Official Publications of the European Union, EEA Report No 8/2011, Luxembourg

  9. Hu S-G, Wang T, Wang F-Z, Liu Z-C (2009) Adsorption behaviour between cement and asphalt emulsion in cement–asphalt mortar. Adv Cement Res 21(1):11–14

  10. Ivanov IB, Danov KD, Kralchevsky PA (1999) Flocculation and coalescence of micron-size emulsion droplets. Colloids Surf A 152:161–182

    Article  Google Scholar 

  11. Redelius P (2002) An experimental investigation on coalescence of bitumen emulsions. The 3rd World Congress on Emulsions, Lyon

  12. Sjöblom J (ed) (2006) Emulsions and emulsion stability, 2nd edn. Taylor & Francis Group, Boca Raton

    Google Scholar 

  13. Salomon DR (2006) Asphalt emulsion technology. Transportation Research Board (TRB), Transportation Research Circular E-C102, Washington, DC

  14. Sjöblom J (ed) (2001) Encyclopedic handbook of emulsion technology. Marcel Dekker, New York

    Google Scholar 

  15. García A, Lura P, Partl MN, Jerjen I (2013) Influence of cement content and environmental humidity on asphalt emulsion and cement composites performance. Mater Struct 46(8):1275–1289

    Article  Google Scholar 

  16. Deutsches Institut für Normung (DIN) (2005) EN 196-1. Prüfverfahren für Zement—Teil 1: Bestimmung der Festigkeit

  17. Underwood BS, Kim YR (2011) Experimental investigation into the multiscale behaviour of asphalt concrete. Int J Pavement Eng 12(4):357–370

    Article  Google Scholar 

  18. Izadi A (2012) Quantitative characterization of microstructure of asphalt mixtures to evaluate fatigue crack growth. Master Thesis. The University of Texas at Austin, Austin

  19. Underwood BS, Kim YR (2013) Effect of volumetric factors on the mechanical behavior of asphalt fine aggregate matrix and the relationship to asphalt mixture properties. Constr Build Mater 49:672–681

    Article  Google Scholar 

  20. Dai Q, You Z (2007) Prediction of creep stiffness of asphalt mixture with micromechanical finite-element and discrete-element models. J Eng Mech 133(2):163–173

    Article  MathSciNet  Google Scholar 

  21. You Z, Buttlar WG (2004) Discrete element modeling to predict the modulus of asphalt concrete mixtures. J Mater Civ Eng 16(2):140–146

    Article  Google Scholar 

  22. Kim H, Wagoner MP, Buttlar WG (2008) Simulation of fracture behavior in asphalt concrete using a heterogeneous cohesive zone discrete element model. J Mater Civ Eng 20(8):552–563

    Article  Google Scholar 

  23. Lackner R, Spiegl M, Blab R, Eberhardsteiner J (2005) Is low-temperature creep of asphalt mastic independent of filler shape and mineralogy? Arguments from multiscale analysis. J Mater Civ Eng 17(5):485–491

    Article  Google Scholar 

  24. Schüler T, Manke R, Jänicke R, Radenberg M, Steeb H (2013) Multi-scale modelling of elastic/viscoelastic compounds. ZAMM—J Appl Math Mech 93(2–3):126–137

  25. Wang Z, Sha A (2010) Micro hardness of interface between cement asphalt emulsion mastics and aggregates. Mater Struct 43(4):453–461

    Article  Google Scholar 

  26. Tan Y, Ouyang J, Lv J, Li Y (2013) Effect of emulsifier on cement hydration in cement asphalt mortar. Constr Build Mater 47:159–164

  27. Zhang Y, Kong X, Hou S, Liu Y, Han S (2012) Study on the rheological properties of fresh cement asphalt paste. Constr Build Mater 27:534–544

  28. Qiang W, Peiyu Y, Ruhan A, Jinbo Y, Xiangming K (2011) Strength mechanism of cement-asphalt mortar. J Mater Civil Eng 23(9):1353–1359

  29. Lu C-T, Kuo M-F, Shen D-H (2009) Composition and reaction mechanism of cement–asphalt mastic. Constr Build Mater 23:2580–2585

    Article  Google Scholar 

  30. Wang Z, Wang Q, Ai T (2014) Comparative study on effects of binders and curing ages on properties of cement emulsified asphalt mixture using gray correlation entropy analysis. Construction and Build Mater 54:615–622

  31. Wang F, Liu Z, Wang T, Hu S (2008) A novel method to evaluate the setting process of cement and asphalt emulsion in CA mortar. Mater Struct 41(4):643–647

  32. Du S (2013) Interaction mechanism of cement and asphalt emulsion in asphalt emulsion mixtures. Mater Struct. doi:10.1617/s11527-013-0118-1

    Google Scholar 

  33. Fazhou W, Yunpeng L, Shuguang H (2013) Effect of early cement hydration on the chemical stability of asphalt emulsion. Constr Build Mater 42:146–151

    Article  Google Scholar 

  34. Tan Y, Guo M (2014) Interfacial thickness and interaction between asphalt and mineral fillers. Mater Struct 47(4):605–614

  35. Mendes A, Gates WP, Sanjayan JG, Collins F (2011) NMR, XRD, IR and synchrotron NEXAFS spectroscopic studies of OPC and OPC/slag cement paste hydrates. Mater Struct 44(10):1773–1791

  36. Forschungsgesellschaft für Straßen- und Verkehrswessen (2007) TL BE-StB 07. Technische Lieferbedingungen für Bitumenemulsionen (FGSV-Nr. 793)

  37. Deutsches Institut für Normung (DIN) (2011) EN 13808 (Entwurf). Bitumen und bitumenhaltige Bindemittel—Rahmenwerk für die Spezifizierung kationischer Bitumenemulsionen

  38. Forschungsgesellschaft für Straßen- und Verkehrswesen (2005) M KRC. Merkblatt für Kaltrecycling in situ im Straßenoberbau (FGSV-Nr. 636)

  39. Forschungsgesellschaft für Straßen- und Verkehrswesen (2007) M VB-K. Merkblatt für die Verwendung von pechhaltigen Straßenausbaustoffen und von Asphaltgranulat in bitumengebundenen Tragschichten und durch Kaltaufbereitung in Mischanlagen (FGSV-Nr. 636)

  40. Association Française de Normalisation (AFNOR) (2004) NF P98-251-4. Tests relating to pavements—static tests on bituminous mixtures—part 4: modified DURIEZ test on bitumen emulsion based cold mix asphalts

  41. Ferrotti G, Pasquini E, Canestrari F (2014) Experimental characterization of high-performance fiber-reinforced cold mix asphalt mixtures. Constr Build Mater 57:117–125

  42. Hunter AE, McGreavy L, Airey GD (2009) Effect of compaction mode on the mechanical performance and variability of asphalt mixtures. J Trans Eng 135:839–851

    Article  Google Scholar 

  43. Deutsches Institut für Normung (DIN) (2009) EN 12390-2. Testing hardened concrete—part 2: making and curing specimens for strength tests. Comité Européen de Normalisation, Brussels

  44. Deutsches Institut für Normung (DIN) (2012) EN 12697-6. Asphalt—Prüfverfahren für Heißasphalt—Teil 6: Bestimmung der Raumdichte von Asphalt-Probekörpern

  45. Hu S, Zhang Y, Wang F (2012) Effect of temperature and pressure on the degradation of cement asphalt mortar exposed to water. Constr Build Mater 34:570–574

  46. Di Benedetto H, Partl MN, Francken L, La Roche De, Saint André C (2001) Stiffness testing for bituminous mixtures. Mater Struct 34(2):66–70

    Article  Google Scholar 

  47. Deutsches Institut für Normung (DIN) (2003) EN 12697-23. Asphalt—Prüfverfahren für Heißasphalt—Teil 23: Bestimmung der indirekten Zugfestigkeit von Asphalt-Probekörpern

  48. Khodary Moalla Hamed F (2010) Evaluation of fatigue resistance for modified asphalt concrete mixtures based on dissipated energy concept. Doktor-Ingenieurs (Dr. -Ing.) Dissertation. Technische Universität Darmstadt, Fachgebiet Straßenwesen, Darmstadt

  49. Chailleux E, de La Roche C, Piau J-M (2011) Modeling of complex modulus of bituminous mixtures measured in tension/compression to estimate secant modulus in indirect tensile test. Mater Struct 44(3):641–657

    Article  Google Scholar 

  50. Powers TC, Brownyards TL (1947) Studies of the physical properties of hardened cement paste. J Am Concr Inst 43:984–987

    Google Scholar 

  51. Hansen TC (1986) Physical structure of hardened cement paste. A classical approach. Mater Struct 19(6):423–436

    Article  Google Scholar 

  52. Brouwers HJH (2004) The work of Powers and Brownyard revisited: part 1. Cem Concr Res 34:1697–1716

    Article  Google Scholar 

  53. Brouwers HJH (2005) The work of Powers and Brownyard revisited: part 2. Cem Concr Res 35:1922–1936

    Article  Google Scholar 

  54. Pouliot N, Marchand J, Pigeon M (2003) Hydration mechanisms, microstructure, and mechanical properties of mortars prepared with mixed binder cement slurry-asphalt emulsion. J Mater Civ Eng 15(1):54–59

    Article  Google Scholar 

  55. Wang F, Liu Z, Hu S (2010) Early age volume change of cement asphalt mortar in the presence of aluminum powder. Mater Struct 43(4):493–498

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to gratefully acknowledge Akzo Nobel Surface Chemistry AB (Stenungsund, Sweden) for producing and partially testing the bitumen emulsions, Univ.-Prof. Dr.-Ing. Rolf Breitenbücher (Ruhr-Universität Bochum, Germany) for his valuable advices, and Dipl.-Min. Dirk Kirchner (TFH Georg Agricola, Bochum, Germany) for performing the XRD analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miomir Miljković.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Miljković, M., Radenberg, M. Characterising the influence of bitumen emulsion on asphalt mixture performance. Mater Struct 48, 2195–2210 (2015). https://doi.org/10.1617/s11527-014-0302-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1617/s11527-014-0302-y

Keywords

Navigation