Skip to main content
Log in

Mechanical enhancement of cement-stabilized soil by flax fibre reinforcement and extrusion processing

  • Original Article
  • Published:
Materials and Structures Aims and scope Submit manuscript

Abstract

Cement-based materials typically exhibit low tensile strength and their behaviour is generally brittle. Fibres can be added to make composites with enhanced tensile response and toughness. This study focuses on the effects of flax fibre content, mix design and processing on the hardened product properties (density, fibre orientation, surface quality, compressive and tensile strength). Effects of fibre addition on the mechanical performance of cast and extruded flax fibre reinforced composites are compared. Microstructure observations are used to study the influence of processing on fibre–matrix bond, fibre dispersion and fibre orientation. Flax fibre dispersion and orientation are also investigated to understand their effect on mechanical behaviour. In the case of cast materials, fibres do not significantly improve the mechanical behaviour. In contrast, improvement of fibre dispersion and fibre/matrix bond quality due to an extrusion process enhances mechanical performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Brandt AM (2008) Fibre reinforced cement-based (FRC) composites after over 40 years of development in building and civil engineering. Compos Struct 86(1–3):3–9

    Article  Google Scholar 

  2. Brandt AM (1995) Cement-based composites: materials, mechanical properties and performance. E&FN Spon, London, p 470

    Google Scholar 

  3. Prabakar J, Sridhar RS (2002) Effect of random inclusion of sisal fibre on strength behaviour of soil. Constr Build Mater 16(2):123–131

    Article  Google Scholar 

  4. Ghavami K, Filho RDT, Barbosa NP (1999) Behaviour of composite soil reinforced with natural fibres. Cement Concr Compos 21(1):39–48

    Article  Google Scholar 

  5. Naaman AE (2003) Strain hardening and deflection hardening of fibre reinforced cement composites. In: Reinhardt HW, Naaman AE (eds) Proceedings of the international RILEM workshop ‘high performance fibre reinforced cement composites’ HPFRCC4, Ann Arbor; 2003, pp 95–113

  6. Li VC, Wang S, Wu C (2001) Tensile strain-hardening behaviour of polyvinyl alcohol-engineered cementitious composite (PVA-ECC). Am Concr Inst Mater J 98(8):483–492

    MathSciNet  Google Scholar 

  7. Boulekbache B, Hamrat M, Chemrouk M, Amziane S (2010) Flowability of fibre-reinforced concrete and its effect on the mechanical properties of the material. Constr Build Mater 24(9):1664–1671

    Article  Google Scholar 

  8. Dhonde HB, Mo YL, Hsu TTC, Vogel J (2007) Fresh and hardened properties of self-consolidating fibre-reinforced concrete. Am Concr Inst Mater J 104(5):491–500

    Google Scholar 

  9. Martinie L, Rossi P, Roussel N (2010) Rheology of fibre reinforced cementitious materials: classification and prediction. Cem Concr Res 40(2):226–234

    Article  Google Scholar 

  10. Perrot A, Lecompte T, Estellé P, Amziane S (2013) Structural build-up of rigid fibre reinforced cement-based materials. Mater Struct 46(9):1561–1568

    Article  Google Scholar 

  11. Soroushian P, Bayasi MZ (1991) Fibre-type effect on the performance of steel fibre reinforced concrete. Am Concr Inst Mater J 88(2):129–134

    Google Scholar 

  12. Kuder KG, Shah SP (2010) Processing of high-performance fibre-reinforced cement-based composites. Constr Build Mater 24(2):181–186

    Article  Google Scholar 

  13. Kuder KG, Shah SP (2007) Tailoring extruded HPFRCC to be nailable. Am Concr Inst Mater J 104(5):526–534

    Google Scholar 

  14. Peled A, Shah S (2003) Processing effects in cementitious composites: extrusion and casting. J Mater Civ Eng 15(2):192–199

    Article  Google Scholar 

  15. Aldea C, Marikunte S, Shah SP (1998) Extruded fibre reinforced cement pressure pipe. Adv Cem Based Mater 8(2):47–55

    Article  Google Scholar 

  16. Perrot A, Mélinge Y, Estellé P, Lanos C (2009) Vibro-extrusion: a new forming process for cement-based materials. Adv Cem Res 21(3):125–133

    Article  Google Scholar 

  17. Shao Y, Moras S, Ulkem N, Kuder G (2000) Wood-fibres cement composites by extrusion. Can J Civil Eng 27(3):543–552

    Article  Google Scholar 

  18. Stang H, Pedersen C (1996) HPFRCC—extruded pipes. In: Chong KP (ed) Materials for the new millennium, 2nd edn. American Society of Civil Engineers, New York, pp 261–270

    Google Scholar 

  19. Shao Y, Qiu J, Shah SP (2001) Microstructure of extruded cement-bonded fibreboard. Cem Concr Res 31(8):1153–1161

    Article  Google Scholar 

  20. Ling I, Leshchinsky D, Tatsuoka F (2003) Reinforced soil engineering: advances in research and practice. Marcel Dekker Inc., New York

    Book  Google Scholar 

  21. Molars JP, Camps JP, Laquerbe M (1989) Etude de l’extrusion et de la stabilisation par le ciment d’argiles monominérales. Mater Struct 20(1):44–50

    Article  Google Scholar 

  22. Khelifi H, Perrot A, Lecompte T, Ausias G (2013) Design of clay/cement mixtures for extruded building products. Mater Struct 46:999–1010

    Article  Google Scholar 

  23. Arosio F, Castoldi L, Ferlazzo N, Forzatti P (2006) Influence of solfonated melamine formaldehyde condensate on the quality of building blocks production by extrusion of cement–clay paste. Appl Clay Sci 35(1–2):85–93

    Google Scholar 

  24. Temimi M, Amor KB, Camps JP (1998) Making building products by extrusion and cement stabilization: limits of the process with montmorillonite clay. Appl Clay Sci 13(4):245–253

    Article  Google Scholar 

  25. Coutts RSP (1983) Flax fibres as a reinforcement in cement mortars. Int J Cem Compos Lightweight Concr 5(4):257–262

    Article  Google Scholar 

  26. Coutts RSP (2005) A review of Australian research into natural fibre cement composites. Cem Concr Compos 27(5):518–526

    Article  Google Scholar 

  27. Boghossian E, Wegner LD (2008) Use of flax fibres to reduce plastic shrinkage cracking in concrete. Cem Concr Compos 30(10):929–937

    Article  Google Scholar 

  28. Segetin M, Jayaraman K, Xu X (2007) Harakeke reinforcement of soil–cement building materials: manufacturability and properties. Build Environ 42(8):3066–3079

    Article  Google Scholar 

  29. Nguyen T-T, Picandet V, Amziane S, Baley C (2009) Influence of compactness and hemp hurd characteristics on the mechanical properties of lime and hemp concrete. Eur J Environ Civil Eng 13:1039–1050

    Article  Google Scholar 

  30. Bourmaud A, Ausias G, Lebrun G, Tachon ML, Baley C (2013) Observation of the structure of a composite polypropylene/flax and damage mechanisms under stress. Industr Crops Prod 43:225–236

    Article  Google Scholar 

  31. Feng D, Caulfield DF, Sanadi AR (2001) Effect of compatibilizer on the structure–property relationships of kenaf-fibre/polypropylene composites. Polym Compos 22(4):506–517

    Article  Google Scholar 

  32. Baley C (2002) Analysis of the flax fibres tensile behaviour and analysis of the tensile stiffness increase. Compos A: Appl Sci Manuf 33(7):939–948

    Article  Google Scholar 

  33. Stamboulis A, Baillie CA, Peijs T (2001) Effects of environmental conditions on mechanical and physical properties of flax fibres. Compos A Appl Sci Manuf 32(8):1105–1115

    Article  Google Scholar 

  34. Stancato A, Burke A, Beraldo A (2005) Mechanism of a vegetable waste composite with polymer-modified cement (VWCPMC). Cem Concr Compos 27(5):599–603

    Article  Google Scholar 

  35. Dittenber DB, Rao HVSG (2012) Critical review of recent publications on use of natural composites in infrastructure. Compos A: Appl Sci Manuf 43(8):1419–1429

    Article  Google Scholar 

  36. Khelifi H, Perrot A, Lecompte T, Rangeard D, Ausias G (2013) Prediction of extrusion load and liquid phase filtration during ram extrusion of high solid volume fraction pastes. Powder Technol 249:258–268

    Article  Google Scholar 

  37. Lecompte T, Perrot A, Picandet V, Bellegou H, Amziane S (2012) Cement-based mixes: shearing properties and pore pressure. Cem Concr Res 42(1):139–147

    Article  Google Scholar 

  38. Charlet K, Baley C, Morvan C, Jernot JP, Gomina M, Bréard J (2007) Characteristics of Hermès flax fibres as a function of their location in the stem and properties of the derived unidirectional composites. Compos A 38:1912–1921

    Article  Google Scholar 

  39. Hill CAS, Norton A, Newman G (2009) The vapour sorption behaviour of natural fibers. J Appl Polym Sci 112:1524–1537

    Article  Google Scholar 

  40. Akkaya Y, Picka J, Shah SP (2000) Spatial distribution of aligned short fibres in cement composites. J Eng Mech 12(3):272–279

    Google Scholar 

  41. Akkaya Y, Shah SP, Ankenman B (2001) Effect of fibre dispersion on multiple cracking of cement composites. J Eng Mech 127(4):311–316

    Article  Google Scholar 

  42. Ferrara L, Faifer M, Muhaxheri M, Si T (2012) A magnetic method for non destructive monitoring of fibre dispersion and orientation in steel fibre reinforced cementitious composites. Part 2: correlation to tensile fracture toughness. Mater Struct 45:591–598

    Article  Google Scholar 

  43. Ferrara L, Meda A (2006) Relationships between fibre distribution, workability and the mechanical properties of SFRC applied to precast roof elements. Mater Struct 39:411–420

    Article  Google Scholar 

  44. Stähli P, Custer R, Van Mier JGM (2008) On flow properties, fibre distribution, fibre orientation and flexural behaviour of FRC. Mater Struct 41(1):189–196

    Article  Google Scholar 

  45. Soroushian P, Lee CD (1990) Distribution and orientation of fibres in steel fibre reinforced concrete. Am Concr Inst Mater J 87(5):433–439

    Google Scholar 

  46. Clough GW, Sitar N, Bachus RC, Rad NS (1981) Cemented sands under static loading. J Geotech Eng Div 107(6):799–817

    Google Scholar 

  47. Savastano H, Warden P, Coutts R (2000) Brazilian waste fibres as reinforcement for cement-based composites. Cement Concr Compos 22(5):379–384

    Article  Google Scholar 

  48. Qian X, Zhou X, Mu B, Li Z (2003) Fibre alignment and property direction dependency of FRC extrudate. Cem Concr Res 33(10):1575–1581

    Article  Google Scholar 

  49. Bentur A (1989) Fibre reinforcement cementitious materials. In: Skalny JP (ed) Materials sciences of concrete. The American Ceramic Society, Westerville, OH, pp 223–285

    Google Scholar 

  50. Shao Y, Shah SP (1997) Mechanical properties of PVA fibre reinforced cement composites fabricated by extusion processing. Am Concr Inst Mater J 94(6):555–564

    Google Scholar 

  51. Yan LF, Pendleton RL, Jenkins CHM (1998) Interface morphologies in polyolefin fibre reinforced concrete composites. Compos A Appl Sci Manuf 29(5–6):643–650

    Article  Google Scholar 

  52. Lopes ML, Ladeira M (1996) Influence of the confinement, soil density and displacement rate on soil–geogrid interaction. Geotext Geomembr 14(10):543–554

    Article  Google Scholar 

  53. Beyerlein JI, Zhu YT, Mahesh S (2001) On the influence of fibre shape in bone-shaped short-fibre composites. Compos Sci Technol 61(10):1341–1357

    Article  Google Scholar 

  54. Lecompte T, Perrot A, Subrianto A, Le Duigou A, Ausias A (2015) A novel pull-out device used to study the influence of pressure during processing of cement-based material reinforced with coir. Constr Build Mater 78:224–233

    Article  Google Scholar 

  55. Tang C, Shi B, Gao W, Chen F, Cai Y (2007) Strength and mechanical behaviour of short polypropylene fibre reinforced and cement stabilized clayey soil. Geotext Geomembr 25(3):194–202

    Article  Google Scholar 

  56. NF EN 12390-6: Testing hardened concrete—part 6: tensile splitting strength of test specimens

  57. NF EN 12390-3: Testing hardened concrete—part3: compressive strength of test specimens

  58. Hsu LS, Hsu C-TT (1994) Complete stress–strain behaviour of high-strength concrete under compression. Mag Concr Res 46(169):301–312

    Article  Google Scholar 

  59. Balaguru PN, Shah SP (1992) Fibre-reinforced cement composites. Macgraw-Hill, New York

    Google Scholar 

  60. Consoli NC, Bassani MAA, Festugato L (2010) Effet of fibre-reinforcement on the strength of cemented soils. Geotext Geomembr 28(4):344–351

    Article  Google Scholar 

  61. Ashour T, Bahnasawey A, Wu W (2010) Compressive strength of fibre reinforced earth plasters for straw bale buildings. Aus J Agric Eng 1(3):86–92

    Google Scholar 

  62. Timoshenko S, Goodier JN (1951) Theory of elasticity. Mc Graw-Hill Book Company, New York

    MATH  Google Scholar 

  63. Rossi P, Acker P, Malier Y (1987) Effect of steel fibres at two different stages: the material and the structure. Mater Struct 20(7):436–439

    Article  Google Scholar 

  64. Shah PS (1991) Do fibres increase the tensile strength of cement-based matrixes. Am Concr Inst 88(6):595–602

    Google Scholar 

  65. Mazars J (1984) Application de la mécanique de l’endommagement au comportement non linéaire et à la rupture du béton de structure. PhD thesis. University of Paris 6

  66. Maher H, Ho C (1994) Mechanical properties of kaolinite/fibre soil composite. J Geotech Eng 120(8):1381–1393

    Article  Google Scholar 

  67. EN1992: Eurocode 2, design of concrete structures

  68. Perrot A, Mélinge Y, Rangeard D, Micaelli F, Estellé P, Lanos C (2012) Use of ram extruder as a combined rheo-tribometer to study the behaviour of high yield stress fluids at low strain rate. Rheol Acta 51(8):743–754

    Article  Google Scholar 

  69. Consoli NC, Rotta GV, Prietto PDM (2006) Yielding-compressibility–strength relationship for an artificially cemented soil cured under stress. Géotechnique 56(1):69–72

    Article  Google Scholar 

  70. Chafei S, Khadraoui F, Boutouil M, Gomina M (2014) Optimizing the formulation of flax fibre-reinforced cement composite. Constr Build Mater 54:659–669

    Article  Google Scholar 

  71. Bilba K, Arsene M, Ouensanga A (2003) Sugar cane bagasse fibre reinforced cement composites. Part I. Influence of the botanical components of bagasse on the setting of bagasse/cement composite. Cement Concr Compos 25(1):91–96

    Article  Google Scholar 

  72. Snoeck D, De Belie N (2012) Mechanical and self-healing properties of cementitious composites reinforced with flax and cottonised flax, and compared with polyvinyl alcohol fibres. Biosyst Eng 111(4):325–335

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Lecompte.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khelifi, H., Lecompte, T., Perrot, A. et al. Mechanical enhancement of cement-stabilized soil by flax fibre reinforcement and extrusion processing. Mater Struct 49, 1143–1156 (2016). https://doi.org/10.1617/s11527-015-0564-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1617/s11527-015-0564-z

Keywords

Navigation