Skip to main content

Advertisement

Log in

Distributed cracking mechanisms in textile-reinforced concrete under high speed tensile tests

  • Original Article
  • Published:
Materials and Structures Aims and scope Submit manuscript

Abstract

Distributed cracking mechanisms in textile reinforced concrete (TRC) subjected to high speed loads and temperature variations were studied using digital image correlation (DIC) analysis and finite difference modelling. Three different TRC composites made of laminated AR glass, warp-knitted AR glass and polypropylene were used. Both plain textile and TRC specimens were tested at a nominal strain rate of 100 s−1 at the temperature range of −30–80 °C. The non-uniform distribution of longitudinal strain in TRC systems was divided into three distinct zones of localization, shear lag, and uniform strain and the strain distribution in each zone was quantitatively measured. Tensile strength and postcrack stiffness decreased in various TRCs as the temperature increased with the highest tensile strength of 38.1 MPa, work-to-fracture of 46.6 J, and postcrack stiffness of 459.7 MPa recorded for the warp-knitted AR glass TRC specimens at −30 °C. A finite difference model was used to simulate the experimental crack spacing and stress–strain behaviors as well as the degradation in postcrack stiffness as a function of interfacial bond strength. The experimentally observed crack patterns and failure modes in TRC systems agreed with the numerical simulations and the measurements of slip zone size using DIC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Gupta P, Banthia N (2000) Fiber reinforced wet-mix shotcrete under impact. J Mater Civ Eng 12(1):81–90

    Article  Google Scholar 

  2. Banthia N, Bindiganavile V, Mindess S (2004) Impact blast protection with fiber reinforced concrete. In: Proceedings of RILEM conference on fiber reinforced concrete, BEFIB, pp 31–44

  3. Meyers MA (1994) Dynamic behavior of materials. Wiley, New York

    Book  MATH  Google Scholar 

  4. Nicholas T (1981) Tensile testing of material at high rates of strain. Exp Mech 21:177–185

    Article  Google Scholar 

  5. Kenneth GH (1966) Influence of strain rate on mechanical properties of 6061.T6 aluminum under uniaxial and biaxial states of stress. Exp Mech 6(4):204–211

    Article  Google Scholar 

  6. Zabotkin K, O’Toole B, Trabia M (2003) Identification of the Dynamic Properties of Materials under Moderate Strain Rates. In: Proceedings of 16th ASCE engineering mechanics conference, Seattle, WA

  7. Bruce DM, Matlock DK, Speer JG, De, AK (2004) Assessment of the strain-rate dependent tensile properties of automotive sheet steels. SAE, 0507

  8. Xiao XR (2008) Dynamic tensile testing of plastic materials. Polym Test 27:164–178

    Article  Google Scholar 

  9. Fitoussi J, Meraghni F, Jendli Z, Hug G, Baptiste D (2005) Experimental methodology for high strain rates tensile behavior analysis of polymer matrix composites. Compos Sci Technol 65:2174–2188

    Article  Google Scholar 

  10. Mechtcherine V, Silva FA, Butler M, Zhu D, Mobasher B, Gao S, Mäder E (2011) Behaviour of strain-hardening cement-based composites under high strain rates. J Adv Concr Technol 9(1):51–62

    Article  Google Scholar 

  11. Pinnell M, Hill S (2008) Assessment of techniques used to measure strain during high rate tensile testing of polymeric materials. SAE Technical Paper 2008-01-1338. doi:10.4271/2008-01-1338

  12. Yan B, Kuriyama Y, Uenishi A, Cornette D, Borsutzki M, Wong C (2006) Recommended practice for dynamic testing for sheet steels—development and round robin tests. SAE Technical Paper 2006-01-0120. doi:10.4271/2006-01-0120

  13. ISO (2003) Plastics—determination of tensile properties at high strain rates. A draft of ISO/CD 18872

  14. Bharatkumar BH, Shah, SP (2004) Impact resistance of hybrid fiber reinforced mortar. In: International RILEM symposium on concrete science and engineering: a tribute to Arnon Bentur, e-ISBN: 2912143926, RILEM Publication SARL

  15. Dey V, Bonakdar A, Mobasher B (2014) Low-velocity flexural impact response of fiber-reinforced aerated concrete. Cem Concr Compos 49:100–110

    Article  Google Scholar 

  16. Peled A, Mobasher B (2007) Tensile behavior of fabric cement-based composites: pultruded and cast. J Mater Civ Eng 19(4):340–348

    Article  Google Scholar 

  17. Kruger M, Ozbolt J, Reinhardt HW (2003) A new 3D discrete bond model to study the influence of bond on structural performance of thin reinforced and prestressed concrete plates. In: Proceedings of high performance fiber reinforced cement composites (HPFRCC4), RILEM, Ann Arbor, MI, pp 49–63

  18. Zhu D, Gencoglu M, Mobasher B (2009) Low velocity impact behavior of ar glass fabric reinforced cement composites in flexure. Cem Concr Compos 31(6):379–387

    Article  Google Scholar 

  19. Bhat PS, Chang V, Li M (2014) Effect of elevated temperature on strain-hardening engineered cementitious composites. Constr Build Mater 69:370–380

    Article  Google Scholar 

  20. Silva FA, Butler M, Hempel S, Toledo RD, Mechtcherine V (2014) Effects of elevated temperatures on the interface properties of carbon textile-reinforced concrete. Cem Concr Compos 48:26–34

    Article  Google Scholar 

  21. Krüger M, Reinhardt HW. (2006) In: Wolfgang Brameshuber, editor. Fire resistance. Report 36: textile reinforced concrete—state-of-the-art report of RILEM technical committee 201-TRC. Bagneux: Rilem publications S.A.R.L, chap. 6, pp 83–218

  22. Zhu D, Peled A, Mobasher B (2011) Dynamic tensile testing of fabric–cement composites. Constr Build Mater 25:385–395

    Article  Google Scholar 

  23. Sutton MA, Wolters WJ, Peters WH, Ranson WF, McNeil SR (1983) Determination of displacements using an improved digital correlation method. Image Vis Comput 1(3):133–139. doi:10.1016/0262-8856(83)90064-1

    Article  Google Scholar 

  24. Bruck HA, McNeil SR, Sutton MA, Peters WH (1989) Digital image correlation using Newton–Raphson method of partial differential correction. Exp Mech 29(3):261–267. doi:10.1007/BF02321405

    Article  Google Scholar 

  25. Destrebecq JF, Toussaint E, Ferrier E (2011) Analysis of cracks and deformations in a full scale reinforced concrete beam using a digital image correlation technique. Exp Mech 51(6):879–890

    Article  Google Scholar 

  26. Shah SG, Kishen JMC (2011) Fracture properties of concrete–concrete interfaces using digital image correlation. Exp Mech 51(3):303–313

    Article  Google Scholar 

  27. Koerber H, Xavier J, Camanho PP (2010) High strain rate characterisation of unidirectional carbon-epoxy IM7-8552 in transverse compression and in-plane shear using digital image correlation. Mech Mater 42:1004–1019. doi:10.1016/j.mechmat.2010.09.003

    Article  Google Scholar 

  28. Gao G, Huang S, Xia K, Li Z (2015) Application of digital image correlation (DIC) in dynamic notched semi-circular bend (NSCB) tests. Exp Mech 55:95–104. doi:10.1007/s11340-014-9863-5

    Article  Google Scholar 

  29. Silva FA, Zhu D, Mobasher B, Soranakom C, Toledo RD (2010) High speed tensile behavior of sisal fiber cement composites. Maters Sci Eng A Struct 527(3):544–552

    Article  Google Scholar 

  30. Peled A, Sueki S, Mobasher B (2006) Bonding in fabric-cement systems: effects of fabrication methods. Cem Concr Res 36(9):1661–1671

    Article  Google Scholar 

  31. Peled A, Cohen Z, Pasder Y, Roye A, Gries T (2008) Influences of textile characteristics on the tensile properties of warp knitted cement based composites. Cem Concr Compos 30(3):174–183

    Article  Google Scholar 

  32. Peled A, Mobasher B, Cohen Z (2009) Mechanical properties of hybrid fabrics in pultruded cement composites. Cem Concr Compos 31(9):647–657

    Article  Google Scholar 

  33. Silva FA, Butler M, Mechtcherine V, Zhu D, Mobasher B (2010) Strain rate effect on the tensile behavior of textile-reinforced concrete under static and dynamic loading. Mat Sci Eng A 528:1727–1734. doi:10.1016/j.msea.2010.11.014

    Article  Google Scholar 

  34. Zhu D, Mobasher B, Rajan S (2011) Dynamic tensile testing of Kevlar 49 fabrics. J Mater Civ Eng 23(3):230–239

    Article  Google Scholar 

  35. Kravaev P, Janetzko S, Gries T, Kang B, Brameshuber W, Zell M, Hegger J (2009) Commingling yarns for reinforcement of concrete. In: 4th colloquium on textile reinforced structures (CTRS4)

  36. Peled A, Mobasher B (2006) Properties of fabric–cement composites made by pultrusion. Mater Struct 39(8):787–797

    Article  Google Scholar 

  37. Correlated Solutions Inc. (2009) VIC-2D Reference manual. http://www.correlatedsolutions.com/installs/Vic-2D-2009-Manual.pdf

  38. Pan B, Qian K, Xie H, Asundi A (2009) Two-dimensional digital image correlation for in-plane displacement and strain measurement: a review. Meas Sci Technol. doi:10.1088/0957-0233/20/6/062001

    Google Scholar 

  39. Ferreira T, Rasband W (2012) ImageJ User Guide, IJ 1.46r Revised edition. http://imagej.nih.gov/ij/docs/guide/user-guide.pdf

  40. Soranakom C, Mobasher B (2010) Modeling of tension stiffening in reinforced cement composites: part I— theoretical modeling. Mater Struct 43:1217–1230

    Article  Google Scholar 

  41. Cohen Z, Peled A (2010) Controlled telescopic reinforcement system of fabric–cement composites—durability concerns. Cem Concr Res 40:1495–1506. doi:10.1016/j.cemconres.2010.06.003

    Article  Google Scholar 

  42. Banholzer B, Brockmann T, Brameshuber W (2006) Material and bonding characteristics for dimensioning and modeling of textile reinforced concrete (TRC) elements. Mater Struct 39:749–763. doi:10.1617/s11527-006-9140-x

    Article  Google Scholar 

  43. Soranakom C, Mobasher B (2008) Geometrical and mechanical aspects of fabric bonding and pullout in cement composites. Mater Struct 42:765–777

    Article  Google Scholar 

  44. Portala N, Perezb I, Thranec L, Lundgrena K (2014) Pull-out of textile reinforcement in concrete. Constr Build Mater 71:63–71. doi:10.1016/j.conbuildmat.2014.08.01

    Article  Google Scholar 

  45. Tuyan M, Yazıcı H (2012) Pull-out behavior of single steel fiber from SIFCON matrix. Constr Build Mater 35:571–577. doi:10.1016/j.conbuildmat.2012.04.110

    Article  Google Scholar 

  46. Sueki S, Soranakom C, Mobasher B, Peled A (2007) Pullout-slip response of fabrics embedded in a cement paste matrix. J Mater Civ Eng 19(9):718–727. doi:10.1061/(ASCE)0899-1561(2007)19:9(718)

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Nippon Electric Glass Co., Ltd. USA, SAERTEX GmbH & Co. KG, Germany and Polysack Ltd. Israel for their cooperation for providing the fabrics used in this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Mobasher.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yao, Y., Bonakdar, A., Faber, J. et al. Distributed cracking mechanisms in textile-reinforced concrete under high speed tensile tests. Mater Struct 49, 2781–2798 (2016). https://doi.org/10.1617/s11527-015-0685-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1617/s11527-015-0685-4

Keywords

Navigation