Skip to main content
Log in

Effect of freeze–thaw damage on chloride ingress into concrete

  • Original Article
  • Published:
Materials and Structures Aims and scope Submit manuscript

Abstract

In cold climates, reinforced concrete structures (RCSs) are frequently and severely damaged by freeze–thaw (FT) and deicing-salt attack during winter periods. FT action can also cause additional water uptake known as frost suction. If a critical degree of water saturation is exceeded, severe deterioration of the microstructure of the concrete is likely, enhancing chloride ingress and increasing the probability of corrosion of its reinforcement. We present herein a test method to characterize the resistance of concrete to FT and chloride ingress. Chloride migration tests were performed on concretes with different degrees of FT deterioration, with and without deicing agents. The performance of RCSs is decisively affected under these combined actions. Quantitative description of the resulting FT damage is achieved using ultrasonic measurements and resonance frequency analysis. The test results confirm that the latter nondestructive test method provides more reliable evaluation of FT damage compared with usual ultrasonic pulse velocity measurements. Different concretes with supplementary cementitious materials and different degrees of FT deterioration with and without deicing agents were tested. While concrete made with air-entraining agents clearly showed the best FT resistance, concrete with ground-granulated blast-furnace slag showed superior resistance to both chloride migration and FT attack, both being positively affected by appropriate curing conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Tuutti K (1982) Corrosion of steel in concrete. CBI Research, No. Fo 4:82. Swedish Cement and Concrete Research Institute, Stockholm

  2. Gehlen C (2000) Probabilistische Lebensdauerbemessung von Stahlbetonbauwerken—Zuverlässigkeits-betrachtungen zur wirksamen Vermeidung von Bewehrungskorrosion, Heft 510 der Schriftenreihe des DAfStb

  3. Tang L (1996) Chloride transport in concrete—measurement and prediction. Thesis, Chalmers University of Technology, Goteborg

  4. Neville A (1995) Chloride attack of reinforced concrete: an overview. Mater Struct 28:63–70

    Article  Google Scholar 

  5. Nilsson L-O (1993) Chloride penetration into concrete structures. Nordic miniseminar, P-93:1BE95-1347/TG2/59. Chalmers University of Technology

  6. Šavija B, Schlangen E (2011) Chloride ingress in cracked concrete—a literature review. In: Andrade C, Gulikers J (eds) Advances in modeling concrete service life, RILEM book series, vol 3. Springer, Netherlands, pp 133–142. doi:10.1007/978-94-007-2703-8_14

  7. Geiker MR, Laugesen P (2001) On the effect of laboratory conditioning and freeze/thaw exposure on moisture profiles in HPC. Cem Concr Res 31(12):1831–1836

    Article  Google Scholar 

  8. Yang Z, Weiss WJ, Olek J (2006) Water transport in concrete damaged by tensile loading and freeze-thaw cycling. ASCE J Civ Eng Mater 18(3):424–434

    Article  Google Scholar 

  9. Pease B, Geiker M, Stang H, Weiss J (2011) The design of an instrumented rebar for assessment of corrosion in cracked reinforced concrete. Mater Struct 44:1259–1271

    Article  Google Scholar 

  10. Hiemer F, Keßler S, Gehlen C (2016) Development of chloride induced reinforcement corrosion in cracked concrete after application of a surface protection system. In: Proceedings of the concrete solutions 6th international conference on concrete repair, Thessaloniki, 2016

  11. Rønning TF (2016) CEN freeze-thaw testing—status and deficiencies (approach, acceptance criteria, methodology and research needs). MSSCE, Copenhagen

    Google Scholar 

  12. Setzer MJ, Fagerlund G, Janssen DJ (1996) CDF test—test method for freeze–thaw resistance of concrete—tests with sodium chloride solution. Mater Struct 29:523–528

    Article  Google Scholar 

  13. Kuosa H, Ferreira R, Holt E (2012) Concrete durability based on coupled deterioration by frost, carbonation and chloride. In: International conference on durability of concrete (ICDC), Trondheim, Norway, 2012

  14. Ohtsu M (2011) Damage evaluation in freezing and thawing test of concrete by elastic-wave methods. Mater Struct 44:1725–1734

    Article  Google Scholar 

  15. Farnam Y, Bentz D, Hampton A, Weiss W (2014) Acoustic emission and low-temperature calorimetry study of freeze and thaw behavior in cementitious materials exposed to sodium chloride salt. Transp Res Rec J Transp Res Board 2441:81–90

  16. Farnam Y, Bentz D, Sakulich A, Flynn D, Weiss J (2014) Measuring freeze and thaw damage in mortars containing deicing salt using a low-temperature longitudinal guarded comparative calorimeter and acoustic emission. Adv Civ Eng Mater 3(1):122–141

    Google Scholar 

  17. Wittmann F, Zhang P, Zhao T (2006) Influence of combined environmental loads on durability of reinforced concrete structures. Int J Restor Build Monum 12(4):349–362

    Google Scholar 

  18. Vesikari E, Ferreira M (2011) Frost deterioration process and interaction with carbonation and chloride penetration—analysis and modelling of test results. Research report VTT-R-02782-11, Espoo

  19. Chung C-W, Shon C-S, Kim Y-S (2010) Chloride ion diffusivity of fly ash and silica fume concretes exposed to freeze-thaw-cycles. Constr Build Mater 24:1739–1745

    Article  Google Scholar 

  20. Auberg R (1999) Zuverlässige Prüfung des Frost- und Frost-Tausalz-Widerstands von Beton mit dem CDF- und CIF-Test. Dissertation an der Gesamthochschule Essen

  21. Fagerlund G (1994) Influence of environmental factors on the frost resistance of concrete. Division of Building Materials, Lund Institute of Technology, Report TVBM-3059, 47 p

  22. Setzer MJ, Schießl P, Palecki S, Brandes C (2006) Development of a lab performance test for concrete for application in the exposure class XF2 and correlation to field. Research report, Essen and München

  23. Milachowski C, Lowke D, Gehlen C (2012) Effect of minimal temperature, salt and moisture content on concrete under freeze-thaw deicing salt attack. In: Proceedings of ICDC 2012, international congress on durability of concrete, 18–21 June 2012, Trondheim, Norway

  24. E DIN EN 206:2012-03 Beton – Festlegung, Eigenschaften, Herstellung und Konformität; Deutsche Fassung prEN 206:2012

  25. Palecki S (2006) Hochleistungsbeton unter Frost-Tau-Wechselbelastung: Schädigungs- und Transportmechanismen. Dissertation an der Gesamthochschule Essen

  26. BAW–Bundesanstalt für Wasserbau: Merkblatt Chlorideindringwiderstand von Beton. Bundesanstalt für Wasserbau, 2004

  27. Lay S, Liebl S, Hilbig H, Schießl P (2004) New method to measure the rapid chloride migration coefficient of chloride-contaminated concrete. Cem Concr Res 34:421–427

    Article  Google Scholar 

  28. Setzer MJ, Heine P, Kasparek S, Palecki S, Auberg R, Feldrappe V, Siebel E (2004) Test methods of frost resistance of concrete: CIF-test: capillary suction, internal damage and freeze thaw test—reference method and alternative methods A and B. Mater Struct 37(10):743–753

    Article  Google Scholar 

  29. RILEM TC43-CND (1984) Recommendation for the use of resonant-frequency method in testing concrete specimens

  30. Weiler B, Grosse CU (1995) Elastic constants—their dynamic measurements and calculation. Otto Graf J 6:116–131

    Google Scholar 

  31. Schießl P, Bamforth P, Baroghel-Bouny V, Corley G, Faber M, Forbes J, Gehlen C et al (2006) Model code for service life design. Fib bulletin 34

  32. Powers TC (1958) Structure and physical properties of hardened Portland cement paste. J Am Ceram Soc 41(1):1–6

    Article  Google Scholar 

  33. Neville A (1995) Properties of concrete, 4th edn. Longman, Essex

    Google Scholar 

  34. Mueller C (2006) Performance of Portland-composite cements. Cem Int 4(2):112–119

    Google Scholar 

  35. Lay S (2007) Abschätzung der Wahrscheinlichkeit tausalzinduzierter Bewehrungskorrosion, Baustein eines Systems zum Lebenszyklusmanagement von Stahlbetonbauwerken. München; DAfStb Nr. 568. Beuth-Verlag, Berlin

  36. Costa A, Appleton J (1999) Chloride penetration into concrete in marine environment—Part I: main parameters affecting chloride penetration. Part II: prediction of long term chloride penetration. Mater Struct 32(218):252–259, and 32(219):354–359

  37. Siebel E et al (2005) Sachstandbericht: Übertragbarkeit von Frost-Laborprüfungen auf Praxisverhältnisse. DAfStb

  38. Stark J, Ludwig H-M (1997) Freeze-thaw and freeze-deicing salt resistance of concretes containing cement rich in granulated blast furnace slag. Mater J 94:47–55

    Google Scholar 

  39. Milachowski C, Lowke D, Gehlen C (2012) Detection of transport processes during freeze-thaw deicing salt attack using single-sided NMR. In: Proceedings of microdurability, Amsterdam, 2012

  40. Stark J, Ludwig H-M (1994) Frost- und Frost-Tausalz–Widerstand von Beton–ein rein physikalisches Problem? Wiss. Zeitschrift der Hochschule für Architektur und Bauwesen Weimar 40 H. 5/6/7, 95–104

  41. Powers T (1949) The air requirement of frost-resistant concrete. In: Highway Research Board proceedings 29th annual meeting, Washington, DC

  42. Powers TC, Brownyard TL (1947) Studies of the physical properties of hardened Portland cement paste. Bull. 22, Research Laboratory of Portland Cement Association, Skokie, IL, US, 1948 reprinted from J Am Concr Inst (Proc) 43:1947

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sylvia Kessler.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kessler, S., Thiel, C., Grosse, C.U. et al. Effect of freeze–thaw damage on chloride ingress into concrete. Mater Struct 50, 121 (2017). https://doi.org/10.1617/s11527-016-0984-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1617/s11527-016-0984-4

Keywords

Navigation