Skip to main content
Log in

A review of advances in magnetorheological dampers: their design optimization and applications

磁流变阻尼器最新进展综述:优化设计和应用

  • Review
  • Published:
Journal of Zhejiang University-SCIENCE A Aims and scope Submit manuscript

Abstract

In recent years, magnetorheological (MR) fluid technology has received much attention and consequently has shown much improvement. Its adaptable nature has led to rapid growth in such varied engineering applications as the base isolation of civil structures, vehicle suspensions, and several bio-engineering mechanisms through its implementation in different MR fluid base devices, particularly in MR dampers. The MR damper is an advanced application of a semi-active device which performs effectively in vibration reduction due to its control ability in both on and off states. The MR damper has the capacity to generate a large damping force, with comparatively low power consumption, fast and flexible response, and simplicity of design. With reference to the huge demand for MR dampers, this paper reviews the advantages of these semi-active systems over passive and active systems, the versatile application of MR dampers, and the fabrication of the configurations of various MR dampers, and provides an overview of various MR damper models. To address the increasing adaptability of the MR dampers, their latest design optimization and advances are also presented. Because of the tremendous interest in self-powered and energy-saving technologies, a broad overview of the design of MR dampers for energy harvesting and their modeling is also incorporated in this paper.

中文概要

概要

本文对各种磁流变阻尼器的优化设计、制造和智 能应用以及自供电和自感应技术的最新进展进 行了综述。本文讨论了磁流变阻尼器的基本设计 和结构以及各种类型的配置,以了解它们在各种 环境和目的下的多功能性。为了应对不同的应 用,本文介绍了设计的修改、优化和改进。节能 是当前的终极需求,是对现代技术的挑战。磁流 变阻尼器需要改进,以确保较低的电流供应得到 较高的效力。这项工作将有助于在各种结构中使 用磁流变阻尼器,使其以最小的电流供应进行振 动控制,并在优化中获得最佳结果。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ahmadian, M., Poynor, J.C., 2001. An evaluation of magneto rheological dampers for controlling gun recoil dynamics. Shock and Vibration, 8(3–4):147–155. http://dx.doi.org/10.1155/2001/674830

    Article  Google Scholar 

  • Ahmadian, M., Appleton, R., Norris, J., 1999. Design and development of magneto-rheological dampers for bicycle suspensions. American Society of Mechanical Engineers, Dynamic Systems & Control Division Publication, 67: 737–741.

    Google Scholar 

  • Atabani, A.E., Silitonga, A.S., Badruddin, I.A., et al., 2012. A comprehensive review on biodiesel as an alternative energy resource and its characteristics. Renewable and Sustainable Energy Reviews, 16(4):2070–2093. http://dx.doi.org/10.1016/j.rser.2012.01.003

    Article  Google Scholar 

  • Atabay, E., Ozkol, I., 2014. Application of a magnetorheological damper modeled using the current–dependent Bouc–Wen model for shimmy suppression in a torsional nose landing gear with and without freeplay. Journal of Vibration and Control, 20(11):1622–1644.

    Article  Google Scholar 

  • Avraam, M., Horodinca, M., Romanescu, I., et al., 2010. Computer controlled rotational MR-brake for wrist rehabilitation device. Journal of Intelligent Material Systems and Structures, 21(15):1543–1557.

    Article  Google Scholar 

  • Bitaraf, M., Hurlebaus, S., Barroso, L.R., 2012. Active and semi-active adaptive control for undamaged and damaged building structures under seismic load. Computer-Aided Civil and Infrastructure Engineering, 27(1):48–64. http://dx.doi.org/10.1111/j.1467-8667.2011.00719.x

    Article  Google Scholar 

  • Böse, H., Ehrlich, J., 2012. Magnetorheological dampers with various designs of hybrid magnetic circuits. Journal of Intelligent Material Systems and Structures, 23(9):979–987. http://dx.doi.org/10.1177/1045389X11433497

    Article  Google Scholar 

  • Casciati, F., Rodellar, J., Yildirim, U., 2012. Active and semiactive control of structures-theory and applications: a review of recent advances. Journal of Intelligent Material Systems and Structures, 23(11):1181–1195. http://dx.doi.org/10.1177/1045389X12445029

    Article  Google Scholar 

  • Cha, Y.J., Agrawal, A.K., 2013a. Decentralized output feedback polynomial control of seismically excited structures using genetic algorithm. Structural Control & Health Monitoring, 20(3):241–258. http://dx.doi.org/10.1002/stc.486

    Article  Google Scholar 

  • Cha, Y.J., Agrawal, A.K., 2013b. Velocity based semi-active turbo-Lyapunov control algorithms for seismically excited nonlinear smart structures. Structural Control and Health Monitoring, 20(6):1043–1056. http://dx.doi.org/10.1002/stc.1517

    Article  Google Scholar 

  • Cha, Y.J., Agrawal, A.K., 2016. Robustness studies of sensor faults and noises for semi-active control strategies using large-scale magnetorheological dampers. Journal of Vibration and Control, 22(5):1228–1243. http://dx.doi.org/10.1177/1077546314535947

    Article  Google Scholar 

  • Cha, Y.J., Zhang, J., Agrawal, A.K., et al., 2013a. Comparative studies of semiactive control strategies for MR dampers: pure simulation and real-time hybrid tests. Journal of Structural Engineering, 139(7):1237–1248. http://dx.doi.org/10.1061/(ASCE)ST.1943-541X.0000639

    Article  Google Scholar 

  • Cha, Y.J., Agrawal, A.K., Dyke, S.J., 2013b. Time delay effects on large-scale MR damper based semi-active control strategies. Smart Materials and Structures, 22:055027. http://dx.doi.org/10.1088/0964-1726/22/5/055027

    Article  Google Scholar 

  • Cha, Y.J., Agrawal, A.K., Friedman, A., et al., 2014. Performance validations of semiactive controllers on large-scale moment-resisting frame equipped with 200-kN MR damper using real-time hybrid simulations. Journal of Structural Engineering, 140(10):04014066. http://dx.doi.org/10.1061/(ASCE)ST.1943-541X.0000982

    Article  Google Scholar 

  • Chen, C., Liao, W.H., 2012. A self-sensing magnetorheological damper with power generation. Smart Materials and Structures, 21(2):025014. http://dx.doi.org/10.1088/0964-1726/21/2/025014

    Article  Google Scholar 

  • Cho, S.W., Jung, H.J., Lee, I.W., 2005. Smart passive system based on magnetorheological damper. Smart Materials and Structures, 14(4):707–714. http://dx.doi.org/10.1088/0964-1726/14/4/029

    Article  Google Scholar 

  • Choi, K.M., Jung, H.J., Lee, H.J., et al., 2007. Feasibility study of an MR damper-based smart passive control system employing an electromagnetic induction device. Smart Materials and Structures, 16(6):2323–2329. http://dx.doi.org/10.1088/0964-1726/16/6/036

    Article  Google Scholar 

  • Choi, S.B., Lee, S.K., Park, Y.P., 2001. A hysteresis model for the field-dependent damping force of a magnetorheological damper. Journal of Sound and Vibration, 245(2): 375–383. http://dx.doi.org/10.1006/jsvi.2000.3539

    Article  Google Scholar 

  • Choi, Y.T., Wereley, N.M., 2005. Nondimensional quasisteady analysis of a magnetorheological dashpot damper. International Journal of Modern Physics B, 19(07n09):1584–1590. http://dx.doi.org/10.1142/S0217979205030621

    Article  Google Scholar 

  • Choi, Y.T., Wereley, N.M., 2009. Self-powered magnetorheological dampers. Journal of Vibration and Acoustics, 131(4):044501. http://dx.doi.org/10.1115/1.3142882

    Article  Google Scholar 

  • Chooi, W.W., Oyadiji, S.O., 2008. Design, modelling and testing of magnetorheological (MR) dampers using analytical flow solutions. Computers & Structures, 86(3): 473–482. http://dx.doi.org/10.1016/j.compstruc.2007.02.002

    Article  Google Scholar 

  • Chooi, W.W., Oyadiji, S.O., 2009a. Mathematical modeling, analysis, and design of magnetorheological (MR) dampers. Journal of Vibration and Acoustics, 131(6):061002. http://dx.doi.org/10.1115/1.3142884

    Article  Google Scholar 

  • Chooi, W.W., Oyadiji, S.O., 2009b. Experimental testing and validation of a magnetorheological (MR) damper model. Journal of Vibration and Acoustics, 131(6):061003. http://dx.doi.org/10.1115/1.3142885

    Article  Google Scholar 

  • Crolla, D., Nour, A.A., 1992. Power losses in active and passive suspensions of off-road vehicles. Journal of Terramechanics, 29(1):83–93. http://dx.doi.org/10.1016/0022-4898(92)90016-D

    Article  Google Scholar 

  • de Vicente, J., Klingenberg, D.J., Hidalgo-Alvarez, R., 2011. Magnetorheological fluids: a review. Soft Matter, 7(8):3701–3710. http://dx.doi.org/10.1039/c0sm01221a

    Article  Google Scholar 

  • Dimock, G.A., Yoo, J.H., Wereley, N.M., 2002. Quasi-steady Bingham biplastic analysis of electrorheological and magnetorheological dampers. Journal of Intelligent Material Systems and Structures, 13(9):549–559. http://dx.doi.org/10.1106/104538902030906

    Article  Google Scholar 

  • Du, H., Li, W., Zhang, N., 2011. Semi-active variable stiffness vibration control of vehicle seat suspension using an MR elastomer isolator. Smart Materials and Structures, 20(10):105003. http://dx.doi.org/10.1088/0964-1726/20/10/105003

    Article  Google Scholar 

  • Du, H., Lam, J., Cheung, K., et al., 2013. Direct voltage control of magnetorheological damper for vehicle suspensions. Smart Materials and Structures, 22(10):105016. http://dx.doi.org/10.1088/0964-1726/22/10/105016

    Article  Google Scholar 

  • Dyke, S.J., Spencer, B.F., Sain, M.K., et al., 1996. Modeling and control of magnetorheological dampers for seismic response reduction. Smart Materials and Structures, 5(5):565–575. http://dx.doi.org/10.1088/0964-1726/5/5/006

    Article  Google Scholar 

  • Dyke, S.J., Spencer, B.F., Sain, M.K., et al., 1998. An experimental study of MR dampers for seismic protection. Smart Materials and Structures, 7(5):693–703. http://dx.doi.org/10.1088/0964-1726/7/5/012

    Article  Google Scholar 

  • Ehrgott, R., Masri, S., 1992. Modeling the oscillatory dynamic behaviour of electrorheological materials in shear. Smart Materials and Structures, 1(4):275. http://dx.doi.org/10.1088/0964-1726/1/4/002

    Article  Google Scholar 

  • El-Khoury, O., Adeli, H., 2013. Recent advances on vibration control of structures under dynamic loading. Archives of Computational Methods in Engineering, 20(4):353–360. http://dx.doi.org/10.1007/s11831-013-9088-2

    Article  Google Scholar 

  • Farjoud, A., Vahdati, N., Fah, Y.F., 2008. MR-fluid yield surface determination in disc-type MR rotary brakes. Smart Materials and Structures, 17(3):035021. http://dx.doi.org/10.1088/0964-1726/17/3/035021

    Article  Google Scholar 

  • Ferdaus, M.M., Rashid, M.M., Bhuiyan, M.M.I., 2014a. Development of an advanced semi-active damper using smart fluid. Advanced Materials Research, 939:615–622. http://dx.doi.org/10.4028/www.scientific.net/amr.939.615

    Article  Google Scholar 

  • Ferdaus, M.M., Rashid, M.M., Hasan, M.H., et al., 2014b. Optimal design of magneto-rheological damper comparing different configurations by finite element analysis. Journal of Mechanical Science and Technology, 28(9): 3667–3677. http://dx.doi.org/10.1007/s12206-014-0828-5

    Article  Google Scholar 

  • Ferdaus, M.M., Rashid, M., Hasan, M.H., et al., 2014c. Temperature effect analysis on magneto-rheological damper’s performance. Journal of Automation and Control Engineering, 2(4):392–396. http://dx.doi.org/10.12720/joace.2.4.392-396

    Article  Google Scholar 

  • Fisco, N.R., Adeli, H., 2011. Smart structures: Part I—active and semi-active control. Scientia Iranica, 18(3):275–284. http://dx.doi.org/10.1016/j.scient.2011.05.034

    Article  Google Scholar 

  • Fodor, M., Redfield, R., 1993. The variable linear transmission for regenerative damping in vehicle suspension control. Vehicle System Dynamics, 22(1):1–20.

    Article  Google Scholar 

  • Friedman, A., Dyke, S.J., Phillips, B., et al., 2015. Large-scale real-time hybrid simulation for evaluation of advanced damping system performance. Journal of Structural Engineering, 141(6):04014150. http://dx.doi.org/10.1061/(ASCE)ST.1943-541X.0001093

    Article  Google Scholar 

  • Gavin, H., Hoagg, J., Dobossy, M., 2001. Optimal design of MR dampers. Proceedings of the US-Japan Workshop on Smart Structures for Improved Seismic Performance in Urban Regions, p.225–236.

    Google Scholar 

  • Gavin, H.P., Hanson, R.D., Filisko, F.E., 1996. Electrorheological dampers, part I: analysis and design. Journal of Applied Mechanics, 63(3):669–675. http://dx.doi.org/10.1115/1.2823348

    Article  Google Scholar 

  • Giorgetti, A., Baldanzini, N., Biasiotto, M., et al., 2010. Design and testing of a MRF rotational damper for vehicle applications. Smart Materials and Structures, 19(6): 065006. http://dx.doi.org/10.1088/0964-1726/19/6/065006

    Article  Google Scholar 

  • Goncalves, F., 2005. Characterizing the Behavior of Magneto Rheological Fluids at High Velocities and High Shear. PhD Thesis, Virginia Polytechnic Institute, Blacksburg, USA.

    Google Scholar 

  • Gudmundsson, K., Jonsdottir, F., Thorsteinsson, F., 2010. A geometrical optimization of a magneto-rheological rotary brake in a prosthetic knee. Smart Materials and Structures, 19(3):035023. http://dx.doi.org/10.1088/0964-1726/19/3/035023

    Article  Google Scholar 

  • Hong, S.R., Wereley, N.M., Choi, Y.T., et al., 2008a. Analytical and experimental validation of a nondimensional bingham model for mixed-mode magnetorheological dampers. Journal of Sound and Vibration, 312(3):399–417. http://dx.doi.org/10.1016/j.jsv.2007.07.087

    Article  Google Scholar 

  • Hong, S.R., John, S., Wereley, N.M., et al., 2008b. A unifying perspective on the quasi-steady analysis of magnetorheological dampers. Journal of Intelligent Material Systems and Structures, 19(8):959–976.

    Article  Google Scholar 

  • Hsu, P., 1996. Power recovery property of electrical active suspension systems. Energy Conversion Engineering Conference, p.1899–1904.

    Google Scholar 

  • Huang, J., Zhang, J., Yang, Y., et al., 2002. Analysis and design of a cylindrical magneto-rheological fluid brake. Journal of Materials Processing Technology, 129(1):559–562. http://dx.doi.org/10.1016/S0924-0136(02)00634-9

    Article  Google Scholar 

  • Hung, N.Q., Bok, C.S., 2012. Optimal design of a T-shaped drum-type brake for motorcycle utilizing magnetorheological fluid. Mechanics Based Design of Structures and Machines, 40(2):153–162. http://dx.doi.org/10.1080/15397734.2011.616479

    Article  Google Scholar 

  • Imaduddin, F., Mazlan, S.A., Zamzuri, H., 2013. A design and modelling review of rotary magnetorheological damper. Materials & Design, 51:575–591. http://dx.doi.org/10.1016/j.matdes.2013.04.042

    Article  Google Scholar 

  • Jansen, L.M., Dyke, S.J., 2000. Semiactive control strategies for MR dampers: comparative study. Journal of Engineering Mechanics, 126(8):795–803. http://dx.doi.org/10.1061/(ASCE)0733-9399(2000)126:8(795)

    Article  Google Scholar 

  • Jean, P., Ohayon, R., Le Bihan, D., 2005. Payload/Launcher vibration isolation: MR dampers modeling with fluid compressibility and inertia effects through continuity and momentum equations. International Journal of Modern Physics B, 19(7–9):1534–1541. http://dx.doi.org/10.1142/S0217979205030554

    Article  Google Scholar 

  • Jiang, W., Zhang, Y., Xuan, S., et al., 2011. Dimorphic magnetorheological fluid with improved rheological properties. Journal of Magnetism and Magnetic Materials, 323(24):3246–3250. http://dx.doi.org/10.1016/j.jmmm.2011.07.024

    Article  Google Scholar 

  • Jin, G., Sain, M.K., Spencer, B.F.Jr., 2005. Nonlinear blackbox modeling of MR-dampers for civil structural control. IEEE Transactions on Control Systems Technology, 13(3):345–355. http://dx.doi.org/10.1109/TCST.2004.841645

    Article  Google Scholar 

  • Johnson, C.D., Kienholz, D.A., 1982. Finite element prediction of damping in structures with constrained viscoelastic layers. AIAA Journal, 20(9):1284–1290. http://dx.doi.org/10.2514/3.51190

    Article  Google Scholar 

  • Jung, H.J., Jang, D.D., Lee, H.J., 2008. Self-powered smart damping system using MR damper. International Conference on Noise and Vibration Engineering, p.364–371.

    Google Scholar 

  • Kamath, G.M., Hurt, M.K., Wereley, N.M., 1996. Analysis and testing of Bingham plastic behavior in semi-active electrorheological fluid dampers. Smart Materials and Structures, 5(5):576. http://dx.doi.org/10.1088/0964-1726/5/5/007

    Article  Google Scholar 

  • Kikuchi, T., Kobayashi, K., 2011. Design and development of cylindrical MR fluid brake with multi-coil structure. Journal of System Design and Dynamics, 5(7):1471–1484. http://dx.doi.org/10.1299/jsdd.5.1471

    Article  Google Scholar 

  • Kim, K.J., Lee, C.W., Koo, J.H., 2008. Design and modeling of semi-active squeeze film dampers using magnetorheological fluids. Smart Materials and Structures, 17(3): 035006. http://dx.doi.org/10.1088/0964-1726/17/3/035006

    Article  Google Scholar 

  • King, M., 2013. Comparison of two suspension control strategies for multi-axle heavy truck. Journal of Central South University, 20(2):550–562. http://dx.doi.org/10.1007/s11771-013-1518-7

    Article  Google Scholar 

  • Kothera, C., Ngatu, G., Wereley, N.M., 2011. Control evaluations of semiactive fluid-elastomeric helicopter lag damper. Journal of Guidance, Control, and Dynamics, 34(4):1143–1156. http://dx.doi.org/10.2514/1.51434

    Article  Google Scholar 

  • Kumbhar, B.K., Patil, S.R., Sawant, S.M., 2015. Synthesis and characterization of magneto-rheological (MR) fluids for MR brake application. Engineering Science and Technology, an International Journal, 18(3):432–438. http://dx.doi.org/10.1016/j.jestch.2015.03.002

    Article  Google Scholar 

  • Laalej, H., Lang, Z., Sapiński, B., et al., 2012. MR damper based implementation of nonlinear damping for a pitch plane suspension system. Smart Materials and Structures, 21(4):045006. http://dx.doi.org/10.1088/0964-1726/21/4/045006

    Article  Google Scholar 

  • Lee, D.Y., Wereley, N.M., 1999. Quasi-steady Herschel- Bulkley analysis of electro-and magneto-rheological flow mode dampers. Journal of Intelligent Material Systems and Structures, 10(10):761–769. http://dx.doi.org/10.1106/E3LT-LYN6-KMT2-VJJD

    Article  Google Scholar 

  • Lee, D.Y., Choi, Y.T., Wereley, N.M., 2002. Performance analysis of ER/MR impact damper systems using Herschel-Bulkley model. Journal of Intelligent Material Systems and Structures, 13(7–8):525–531. http://dx.doi.org/10.1106/104538902031061

    Article  Google Scholar 

  • Lesieutre, G.A., Ottman, G.K., Hofmann, H.F., 2004. Damping as a result of piezoelectric energy harvesting. Journal of Sound and Vibration, 269(3):991–1001. http://dx.doi.org/10.1016/S0022-460X(03)00210-4

    Article  Google Scholar 

  • Li, W., Du, H., 2003. Design and experimental evaluation of a magnetorheological brake. The International Journal of Advanced Manufacturing Technology, 21(7):508–515. http://dx.doi.org/10.1007/s001700300060

    Article  Google Scholar 

  • Ma, L., Zhang, J.H., Lin, J.W., et al., 2016. Dynamic characteristics analysis of a misaligned rotor–bearing system with squeeze film dampers. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 17(8):614–631. http://dx.doi.org/10.1631/jzus.A1500111

    Article  Google Scholar 

  • Makris, N., Burton, S.A., Hill, D., et al., 1996a. Analysis and design of ER damper for seismic protection of structures. Journal of Engineering Mechanics, 122(10):1003–1011. http://dx.doi.org/10.1061/(ASCE)0733-9399(1996)122:10(1003)

    Article  Google Scholar 

  • Makris, N., Burton, S.A., Taylor, D.P., 1996b. Electrorheological damper with annular ducts for seismic protection applications. Smart Materials and Structures, 5(5):551–564. http://dx.doi.org/10.1088/0964-1726/5/5/005

    Article  Google Scholar 

  • Mangal, S., Kumar, A., 2015. Geometric parameter optimization of magneto-rheological damper using design of experiment technique. International Journal of Mechanical and Materials Engineering, 10(1):1–9. http://dx.doi.org/10.1186/s40712-015-0031-1

    Article  Google Scholar 

  • Mitchell, R., Kim, Y., El-Korchi, T., et al., 2013. Waveletneuro- fuzzy control of hybrid building-active tuned mass damper system under seismic excitations. Journal of Vibration and Control, 19(12):1881–1894. http://dx.doi.org/10.1177/1077546312450730

    Article  Google Scholar 

  • Nakano, K., Suda, Y., Yamaguchi, M., 2003. Application of combined type self-powered active suspensions to rubbertired vehicles. JSAE Annual Congress, p.19–22.

    Google Scholar 

  • Nehl, T.W., Betts, J., Mihalko, L.S., 1996. An integrated relative velocity sensor for real-time damping applications. Industry Applications, IEEE Transactions on Industry Applications, 32(4):873–881. http://dx.doi.org/10.1109/28.511644

    Article  Google Scholar 

  • Newton, D.E., 2009. Chemistry of New Materials. Infobase Publishing, New York, USA.

    Google Scholar 

  • Nguyen, Q.H., Choi, S.B., 2009. Optimal design of a vehicle magnetorheological damper considering the damping force and dynamic range. Smart Materials and Structures, 18(1):015013. http://dx.doi.org/10.1088/0964-1726/18/1/015013

    Article  Google Scholar 

  • Nguyen, Q.H., Choi, S.B., 2012a. Selection of magnetorheological brake types via optimal design considering maximum torque and constrained volume. Smart Materials and Structures, 21(1):015012. http://dx.doi.org/10.1088/0964-1726/21/1/015012

    Article  Google Scholar 

  • Nguyen, Q.H., Choi, S.B., 2012b. Optimal design of a novel hybrid MR brake for motorcycles considering axial and radial magnetic flux. Smart Materials and Structures, 21(5):055003. http://dx.doi.org/10.1088/0964-1726/21/5/055003

    Article  Google Scholar 

  • Nguyen, Q.H., Han, Y.M., Choi, S.B., et al., 2007. Geometry optimization of MR valves constrained in a specific volume using the finite element method. Smart Materials and Structures, 16(6):2242. http://dx.doi.org/10.1088/0964-1726/16/6/027

    Article  Google Scholar 

  • Nguyen, Q.H., Choi, S.B., Wereley, N.M., 2008. Optimal design of magnetorheological valves via a finite element method considering control energy and a time constant. Smart Materials and Structures, 17(2):025024. http://dx.doi.org/10.1088/0964-1726/17/2/025024

    Article  Google Scholar 

  • Or, S., Duan, Y., Ni, Y.Q., et al., 2008. Development of magnetorheological dampers with embedded piezoelectric force sensors for structural vibration control. Journal of Intelligent Material Systems and Structures, 19(11): 1327–1338. http://dx.doi.org/10.1177/1045389X07085673

    Article  Google Scholar 

  • Ou, J.P., Li, H., 2009. Design approaches for active, semi-active and passive control systems based on analysis of characteristics of active control force. Earthquake Engineering and Engineering Vibration, 8(4):493–506. http://dx.doi.org/10.1007/s11803-009-9119-z

    Article  Google Scholar 

  • Park, E.J., Stoikov, D., da Luz, L.F., et al., 2006. A performance evaluation of an automotive magnetorheological brake design with a sliding mode controller. Mechatronics, 16(7):405–416. http://dx.doi.org/10.1016/j.mechatronics.2006.03.004

    Article  Google Scholar 

  • Phillips, R.W., 1969. Engineering Applications of Fluids with a Variable Yield Stress. University of California, Berkeley, USA.

    Google Scholar 

  • Powell, L.A., Hu, W., Wereley, N.M., 2013. Magnetorheological fluid composites synthesized for helicopter landing gear applications. Journal of Intelligent Material Systems and Structures, 24(9):1043–1048.

    Article  Google Scholar 

  • Poynor, J.C., 2001. Innovative Designs for Magnetorheological Dampers. PhD Thesis, Virginia Polytechnic Institute and State University, Blacksburg, USA.

    Google Scholar 

  • Qian, L.J., Liu, B., Chen, P., et al., 2016. An inverse model for magnetorheological dampers based on a restructured phenomenological model. Active and Passive Smart Structures and Integrated Systems, 9799:97993H. http://dx.doi.org/10.1117/12.2217948

    Google Scholar 

  • Rahman, M., Ong, Z.C., Chong, W.T., et al., 2015. Performance enhancement of wind turbine systems with vibration control: a review. Renewable and Sustainable Energy Reviews, 51:43–54. http://dx.doi.org/10.1016/j.rser.2015.05.078

    Article  Google Scholar 

  • Rashid, M.M., Rahim, N.A., Hussain, M.A., et al., 2011. Analysis and experimental study of magnetorheologicalbased damper for semiactive suspension system using fuzzy hybrids. Industry Applications, IEEE Transactions, 47(2):1051–1059. http://dx.doi.org/10.1109/TIA.2010.2103292

    Article  Google Scholar 

  • Rashid, M.M., Ferdaus, M.M., Hasan, M.H., et al., 2015. ANSYS finite element design of an energy saving magneto-rheological damper with improved dispersion stability. Journal of Mechanical Science and Technology, 29(7):2793–2802. http://dx.doi.org/10.1007/s12206-015-0608-x

    Article  Google Scholar 

  • Russell, J.L., 2001. Magnetostrictive position sensors enter the automotive market. Sensors, 18(12):26–31.

    Google Scholar 

  • Sapiński, B., 2010. Vibration power generator for a linear MR damper. Smart Materials and Structures, 19(10):105012. http://dx.doi.org/10.1088/0964-1726/19/10/105012

    Article  Google Scholar 

  • Sapiński, B., 2014. Energy-harvesting linear MR damper: prototyping and testing. Smart Materials and Structures, 23(3):035021. http://dx.doi.org/10.1088/0964-1726/23/3/035021

    Article  Google Scholar 

  • Sato, Y., Umebara, S., 2012. Power-saving magnetization for magnetorheological fluid control using a combination of permanent magnet and electromagnet. Magnetics, IEEE Transactions on, 48(11):3521–3524. http://dx.doi.org/10.1109/TMAG.2012.2207093

    Article  Google Scholar 

  • Scruggs, J., Iwan, W., 2003. Control of a civil structure using an electric machine with semiactive capability. Journal of Structural Engineering, 129(7):951–959. http://dx.doi.org/10.1061/(ASCE)0733-9445(2003)129:7(951)

    Article  Google Scholar 

  • Segel, L., Lu, X., 1982. Vehicular resistance to motion as influenced by road roughness and highway alignment. Australian Road Research, 12(4):211–222.

    Google Scholar 

  • Senkal, D., Gurocak, H., 2009. Compact MR-brake with serpentine flux path for haptics applications. EuroHaptics Conference 2009 and Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems, p.91–96. http://dx.doi.org/10.1109/WHC.2009.4810807

    Chapter  Google Scholar 

  • Singh, H.J., Wereley, N.M., 2014. Optimal control of gun recoil in direct fire using magnetorheological absorbers. Smart Materials and Structures, 23(5):055009. http://dx.doi.org/10.1088/0964-1726/23/5/055009

    Article  Google Scholar 

  • Snamina, J., Sapiński, B., 2011. Energy balance in selfpowered MR damper-based vibration reduction system. Bulletin of the Polish Academy of Sciences: Technical Sciences, 59(1):75–80.

    MATH  Google Scholar 

  • Song, X., Ahmadian, M., Southward, S., 2005. Modeling magnetorheological dampers with application of nonparametric approach. Journal of Intelligent Material Systems and Structures, 16(5):421–432. http://dx.doi.org/10.1177/1045389X05051071

    Article  Google Scholar 

  • Song, X., Ahmadian, M., Southward, S., et al., 2007. Parametric study of nonlinear adaptive control algorithm with magneto-rheological suspension systems. Communications in Nonlinear Science and Numerical Simulation, 12(4):584–607. http://dx.doi.org/10.1016/j.cnsns.2005.05.004

    Article  MATH  Google Scholar 

  • Spencer, B.F.Jr., Dyke, S.J., Sain, M.K., et al., 1997. Phenomenological model for magnetorheological dampers. Journal of Engineering Mechanics, 123(3):230–238. http://dx.doi.org/10.1061/(ASCE)0733-9399(1997)123:3(230)

    Article  Google Scholar 

  • Spencer, B.F.Jr., Yang, G., Carlson, J.D., et al., 1998. Smart dampers for seismic protection of structures: a full-scale study. Proceedings of the Second World Conference on Structural Control, p.417–426.

    Google Scholar 

  • Sung, K.G., Choi, S.B., Park, M.K., 2011. Geometry optimization of magneto-rheological damper for vehicle suspension via finite element method. Advanced Science Letters, 4(3):805–809. http://dx.doi.org/10.1166/asl.2011.1435

    Article  Google Scholar 

  • Togun, H., Abdulrazzaq, T., Kazi, S., et al., 2014. A review of studies on forced, natural and mixed heat transfer to fluid and nanofluid flow in an annular passage. Renewable and Sustainable Energy Reviews, 39:835–856. http://dx.doi.org/10.1016/j.rser.2014.07.008

    Article  Google Scholar 

  • Tsang, H., Su, R., Chandler, A., 2006. Simplified inverse dynamics models for MR fluid dampers. Engineering Structures, 28(3):327–341. http://dx.doi.org/10.1016/j.engstruct.2005.06.013

    Article  Google Scholar 

  • Tsujita, T., Ohara, M., Sase, K., et al., 2012. Development of a haptic interface using MR fluid for displaying cutting forces of soft tissues. IEEE International Conference on Robotics and Automation, p.1044–1049.

    Google Scholar 

  • Velinsky, S.A., White, R.A., 1980. Vehicle energy dissipation due to road roughness. Vehicle System Dynamics, 9(6): 359–384. http://dx.doi.org/10.1080/00423118008968630

    Article  Google Scholar 

  • Wang, D., Liao, W., 2005. Modeling and control of magnetorheological fluid dampers using neural networks. Smart Materials and Structures, 14(1):111. http://dx.doi.org/10.1088/0964-1726/14/1/011

    Article  Google Scholar 

  • Wang, D., Wang, T., 2009. Principle, design and modeling of an integrated relative displacement self-sensing magnetorheological damper based on electromagnetic induction. Smart Materials and Structures, 18(9):095025. http://dx.doi.org/10.1088/0964-1726/18/9/095025

    Article  Google Scholar 

  • Wang, D., Bai, X., 2011. Pareto optimization-based tradeoff between the damping force and the sensed relative displacement of a self-sensing magnetorheological damper. Journal of Intelligent Material Systems and Structures, 22(13):1451–1467.

    Article  Google Scholar 

  • Wang, D., Liao, W., 2011. Magnetorheological fluid dampers: a review of parametric modeling. Smart Materials and Structures, 20(2):023001. http://dx.doi.org/10.1088/0964-1726/20/2/023001

    Article  Google Scholar 

  • Wang, D., Bai, X., Liao, W., 2010. An integrated relative displacement self-sensing magnetorheological damper: prototyping and testing. Smart Materials and Structures, 19(10):105008. http://dx.doi.org/10.1088/0964-1726/19/10/105008

    Article  Google Scholar 

  • Wang, X., Gordaninejad, F., 2000. Field-controllable electroand magneto-rheological fluid dampers in flow mode using Herschel-Bulkley theory. SPIE’s 7th Annual International Symposium on Smart Structures and Materials, p.232–243.

    Google Scholar 

  • Wang, Z., Chen, Z., Spencer, B.F.Jr., 2009. Self-powered and sensing control system based on MR damper: presentation and application. Proc. SPIE 7292, Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems, 7292:729240. http://dx.doi.org/10.1117/12.815395

    Google Scholar 

  • Wereley, N.M., Pang, L., 1998. Nondimensional analysis of semi-active electrorheological and magnetorheological dampers using approximate parallel plate models. Smart Materials and Structures, 7(5):732–743. http://dx.doi.org/10.1088/0964-1726/7/5/015

    Article  Google Scholar 

  • Wereley, N.M., Cho, J.U., Choi, Y.T., et al., 2008. Magnetorheological dampers in shear mode. Smart Materials and Structures, 17(1):015022. http://dx.doi.org/10.1088/0964-1726/17/01/015022

    Article  Google Scholar 

  • Xie, H.L., Liang, Z.Z., Li, F., et al., 2010. The knee joint design and control of above-knee intelligent bionic leg based on magneto-rheological damper. International Journal of Automation and Computing, 7(3):277–282. http://dx.doi.org/10.1007/s11633-010-0503-y

    Article  Google Scholar 

  • Xie, Z., Wong, P.K., Zhao, J., et al., 2013. A noise-insensitive semi-active air suspension for heavy-duty vehicles with an integrated fuzzy-wheelbase preview control. Mathematical Problems in Engineering, 2013:121953. http://dx.doi.org/10.1155/2013/121953

    Google Scholar 

  • Yang, G., 2001. Large-scale Magnetorheological Fluid Damper for Vibration Mitigation: Modeling, Testing and Control. PhD Thesis, University of Notre Dame, Notre Dame, USA.

    Google Scholar 

  • Yazid, I.I.M., Mazlan, S.A., Kikuchi, T., et al., 2014. Design of magnetorheological damper with a combination of shear and squeeze modes. Materials & Design, 54:87–95. http://dx.doi.org/10.1016/j.matdes.2013.07.090

    Article  Google Scholar 

  • York, T.M., Gilmore, C.D., Libertiny, T.G., 1997. Magnetorheological Fluid Coupling Device and Torque Load Simulator System. US Patent 5598908.

    Google Scholar 

  • Yu, F., Cao, M., Zheng, X., 2005. Research on the feasibility of vehicle active suspension with energy regeneration. Journal of Vibration and Shock, 24(4):27–30.

    Google Scholar 

  • Zhu, X.C., Jing, X.J., Cheng, L., 2012. Magnetorheological fluid dampers: a review on structure design and analysis. Journal of Intelligent Material Systems and Structures, 23(8):839–873. http://dx.doi.org/10.1177/1045389X12436735

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhi Chao Ong.

Additional information

Project supported by the University of Malaya Research Grant (No. RP013B-15SUS), the Fundamental Research Grant Scheme (No. FP010-2014A), the Postgraduate Research Fund (No. PG098-2015A), and the Advanced Shock and Vibration Research (ASVR) Group of the University of Malaya

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rahman, M., Ong, Z.C., Julai, S. et al. A review of advances in magnetorheological dampers: their design optimization and applications. J. Zhejiang Univ. Sci. A 18, 991–1010 (2017). https://doi.org/10.1631/jzus.A1600721

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1631/jzus.A1600721

Keywords

关键词

Navigation