Skip to main content
Log in

Assessing potential dietary toxicity of heavy metals in selected vegetables and food crops

  • Review
  • Published:
Journal of Zhejiang University SCIENCE B Aims and scope Submit manuscript

Abstract

Heavy metals, such as cadmium, copper, lead, chromium and mercury, are important environmental pollutants, particularly in areas with high anthropogenic pressure. Their presence in the atmosphere, soil and water, even in traces can cause serious problems to all organisms, and heavy metal bioaccumulation in the food chain especially can be highly dangerous to human health. Heavy metals enter the human body mainly through two routes namely: inhalation and ingestion, ingestion being the main route of exposure to these elements in human population. Heavy metals intake by human populations through food chain has been reported in many countries. Soil threshold for heavy metal toxicity is an important factor affecting soil environmental capacity of heavy metal and determines heavy metal cumulative loading limits. For soil-plant system, heavy metal toxicity threshold is the highest permissible content in the soil (total or bioavailable concentration) that does not pose any phytotoxic effects or heavy metals in the edible parts of the crops does not exceed food hygiene standards. Factors affecting the thresholds of dietary toxicity of heavy metal in soil-crop system include: soil type which includes soil pH, organic matter content, clay mineral and other soil chemical and biochemical properties; and crop species or cultivars regulated by genetic basis for heavy metal transport and accumulation in plants. In addition, the interactions of soil-plant root-microbes play important roles in regulating heavy metal movement from soil to the edible parts of crops. Agronomic practices such as fertilizer and water managements as well as crop rotation system can affect bioavailability and crop accumulation of heavy metals, thus influencing the thresholds for assessing dietary toxicity of heavy metals in the food chain. This paper reviews the phytotoxic effects and bioaccumulation of heavy metals in vegetables and food crops and assesses soil heavy metal thresholds for potential dietary toxicity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arnesen, A.K.M., Singh, B.R., 1998. Plant uptake and DTPA-extractability of Cd, Cu, Ni and Zn in a Norwegian alum shale soil as affected by previous addition of dairy and pig manures and peat. Can. J. Soil Sci., 78(3):531–539.

    CAS  Google Scholar 

  • Bahemuka, T.E., Mubofu, E.B., 1999. Heavy metals in edible green vegetables grown along the sites of the Sinza and Msimbazi rivers in Dar es Salaam, Tanzania. Food Chem., 66(1):63–66. [doi:10.1016/S0308-8146(98)00213-1]

    Article  CAS  Google Scholar 

  • Baker, D.E., 1990. Copper. In: Alloway, B.J. (Ed.), Heavy Metals in Soils. John Wiley & Sons, New York, p.151–196.

    Google Scholar 

  • Barone, A., Ebesh, O., Harper, R.G., Wapnir, R.A., 1998. Placental copper transport in rats: effects of elevated dietary zinc on fetal copper, iron and metallothionien. J. Nutr., 128(6):1037–1041.

    PubMed  CAS  Google Scholar 

  • Bilos, C., Colombo, J.C., Skorupka, C.N., Rodriguez Presa, M.J., 2001. Source, distribution and variability of airborne trace metals in La Plata City area, Argentina. Environ. Pollut., 111(1):149–158. [doi:10.1016/S0269-7491(99)00328-0]

    Article  PubMed  CAS  Google Scholar 

  • Brooks, R.R., 1998. Phytochemistry of Hyperaccumulators. In: Plants that Hyperaccumulate Heavy Metals. CAB International, Wallingford, p.15–53.

    Google Scholar 

  • Brooks, R.R., Robinson, B.H., 1998. Aquatic Phytoremediation by Accumulator Plants. In: Brooks, R.R. (Ed.), Plants that Hyperaccumulate Heavy Metals. CAB International, Wallingford, p.203–226.

    Google Scholar 

  • Brooks, R.R., Chambers, M.F., Nicks, L.J., Robinson, B.H., 1998. Phytomining. Trends Plant Sci., 3(9):359–362. [doi:10.1016/S1360-1385(98)01283-7]

    Article  Google Scholar 

  • Cajuste, L.J., Cruz-Diaz, J., Garcia-Osorio, C., 2000. Extraction of heavy metals from contaminated soils. I. Sequential extraction in surface soils and their relationships to DTPA extractable metals and metal plant uptake. J. Environ. Sci. Health, A35:1141–1152.

    CAS  Google Scholar 

  • Cambra, K., Martínez, T., Urzelai, A., Alonso, E., 1999. Risk analysis of a farm area near a lead-and cadmium-contaminated industrial site. J. Soil Contam., 8(5):527–540. [doi:10.1080/10588339991339450]

    Article  CAS  Google Scholar 

  • Chinese Department of Preventive Medicine, 1994. Threshold for Food Hygiene. China Standard Press, Beijing (in Chinese).

    Google Scholar 

  • Chinese Department of Preventive Medicine, 1995. Threshold for Food Hygiene. China Standard Press, Beijing (in Chinese).

    Google Scholar 

  • Chronopoulos, J., Haidouti, C., Chronopoulou-Sereli, A., Massas, I., 1997. Variations in plant and soil lead and cadmium content in urban parks in Athens, Greece. Sci. Total Environ., 196(1):91–98. [doi:10.1016/S0048-9697(96)05415-0]

    Article  CAS  Google Scholar 

  • Coutate, T.P., 1992. Food, the Chemistry of Its Component, 2nd Ed. Royal Society of Chemistry, Cambridge, p.265.

    Google Scholar 

  • Dabeca, R.W., McKenzie, A.D., Lacroix, G.M.A., 1987. Dietary intakes of lead, cadmium, arsenic and fluoride by Canadian adults, a 24 hours duplicate diet study. Food Addit. Contam., 4:89–102.

    Google Scholar 

  • Damek-Poprawa, M., Sawicka-Kapusta, K., 2003. Damage to liver, kidney, and teatis with reference to burden of heavy metals in yellow-necked mice from areas around steelworks and zinc smelters in Poland. Toxicology, 186(1–2):1–10. [doi:10.1016/S0300-483X(02)00595-4]

    Article  PubMed  CAS  Google Scholar 

  • Darmawa, M., Wada, S.I., 1999. Kinetics of speciation of copper, lead, and zinc loaded to soils that differ in cation exchanger composition at low moisture content. Commun. Soil Sci. Plant Anal., 30(30):2363–2375.

    Google Scholar 

  • DEFRA (Department of Environment, Food and Rural Affairs), 1999. Total Diet Study—Aluminium, Arsenic, Cadmium, Chromium, Copper, Lead, Mercury, Nickel, Selenium, Tin and Zinc. The Stationery Office, London.

    Google Scholar 

  • DEFRA (Department of Environment, Food and Rural Affairs) and Environment Agency, 2002a. Contaminated Land Exposure Assessment Model (CLEA): Technical Basis and Algorithms. Bristol, UK.

  • DEFRA (Department of Environment, Food and Rural Affairs) and Environment Agency, 2002b. Assessment of Risks to Human Health from Land Contamination: An Overview of the Development of Soil Guideline Values and Related Research, CLR7. Bristol, UK.

  • DETR (Department of Environment, Transport and the Regions), 2000. Contaminated Land: Implementation of Part IIA of the Environmental Protection Act 1999. The Stationery Office, London.

    Google Scholar 

  • Dick, G.L., Hughes, J.T., Mitchell, J.W., David, F., 1978. Survey of trace elements and pesticides in New Zealand. J. Sci., 21:57–69.

    CAS  Google Scholar 

  • Doran, P.M., 1997. Hairy Roots: Culture and Applications. Harwood, Amsterdam, p.239.

    Google Scholar 

  • Dudka, S., Miller, W.P., 1999. Permissible concentrations of arsenic and lead in soils based on risk assessment. Water Air Soil Poll., 113(1/4):127–132. [doi:10.1023/A:1005028905396]

    Article  CAS  Google Scholar 

  • Ellen, G., Loon, J.W., Tolsma, K., 1990. Heavy metals in vegetables grown in the Netherlands and in domestic and imported fruits. Z. Lebensm. Unters. Forsch., 190(1):34–39. [doi:10.1007/BF01188261]

    Article  PubMed  CAS  Google Scholar 

  • Fergusson, J.E., 1990. The Heavy Elements: Chemistry, Environmental Impact and Health Effects. Pergamin Press, Oxford, p.382–399.

    Google Scholar 

  • Fox, B.A., 1982. Food Science. Holder and Stoughton, London.

    Google Scholar 

  • Gyorffy, E.J., Chan, H., 1992. Copper deficiency and mycrocytic anemia resulting from prolonged ingestion of over-the-counter zinc. Am. J. Gastroenterol., 87:1054–1055.

    PubMed  CAS  Google Scholar 

  • Hawley, J.K., 1985. Assessment of health risk from exposure to contaminated soil. Risk Anal., 5(4):289–302. [doi:10.1111/j.1539-6924.1985.tb00185.x]

    Article  PubMed  CAS  Google Scholar 

  • Homer, F.A., Reeves, R.D., Brooks, R.R., Baker, A.J.M., 1991. Characterization of the nickel-rich extract from the nickel hyperaccumulator Dichapetalum gelonioides. Phytochemistry, 30(7):2141–2145. [doi:10.1016/0031-9422(91)83602-H]

    Article  CAS  Google Scholar 

  • Hough, R.L., Breward, N., Young, S.D., Crout, N.M., Tye, A.M., Moir, A.M., Thornton, I., 2004. Assessing potential risk of heavy metal exposure from consumption of home-produced vegetables by urban populations. Environ. Health Perspect., 112(2):215–221.

    Article  PubMed  CAS  Google Scholar 

  • Hughes, J.B., Shanks, J., Vanderford, M., Lauritzen, J., Bhadra, R., 1997. Transformation of TNT by aquatic plants and plant tissue cultures. Environ. Sci. Technol., 31(1):266–271. [doi:10.1021/es960409h]

    Article  CAS  Google Scholar 

  • ICRCL (Inter-Departmental Committee on the Redevelopment of Contaminated Land), 1987. Guidance on the Assessment and Redevelopment of Contaminated Land, 2nd ed. The Stationery Office, London.

    Google Scholar 

  • Kersten, W.J., Brooks, R.R., Reeves, R.D., Jaffré, T., 1980. Nature of nickel complexes in Psychotria douarrei and other nickel-accumulating plants. Phytochemistry, 19(9):1963–1965. [doi:10.1016/0031-9422(80)83013-5]

    Article  CAS  Google Scholar 

  • Kiekens, L., 1990. Zinc. In: Alloway, B.J. (Ed.), Heavy Metals in Soils. John Wiley & Sons, New York, p.261–279.

    Google Scholar 

  • Konz, J., Lisi, K., Friebele, E., 1989. Exposure Factors Handbook. EPA/600/8-89/043. US Environmental Protection Agency, Office of the Health and Environmental Assessment, Washington DC.

    Google Scholar 

  • Krämer, U., Cotter-Howells, J.D., Charnock, J.M., Baker, A.J.M., Smith, J.A.C., 1996. Free histidine as a metal chelator in plants that accumulate nickel. Nature, 379(6566):635–638. [doi:10.1038/379635a0]

    Article  Google Scholar 

  • Kuo, S., Heilman, P.E., Baker, S., 1983. Distribution and forms of copper, zinc, cadmium, iron, and managenese in soils near a copper smelter. Soil Sci., 135:101–109.

    Article  CAS  Google Scholar 

  • Lăcătuşu, R., Răuţă, C., Cârstea, S., Ghelase, I., 1996. Soil-plant-man relationships in heavy metal polluted areas in Romania. Applied Geochem., 11(1–2):105–107. [doi:10.1016/0883-2927(95)00101-8]

    Google Scholar 

  • Long, X.X., Yang, X.E., Ni, W.Z., Ye, Z.Q., He, Z.L., Calvert, D.V., Stoffella, J.P., 2003. Assessing zinc thresholds for phytotoxicity and potential dietary toxicity in selected vegetable crops. Commun. Soil Sci. Plant Anal., 34(9 & 10):1421–1434. [doi:10.1081/CSS-120020454]

    Article  CAS  Google Scholar 

  • Ma, Q.Y., Traina, S.J., Logan, T.J., 1994. Effect of aqueous Al, Cd, Fe(II), Ni and Zn on Pb immobilization by hydroxyapatite. Environ. Sci. Technol., 28(7):1219–1228.

    CAS  Google Scholar 

  • Macek, T., Kotrba, P., Suchova, M., Skacel, F., Demnerova, K., Ruml, T., 1994. Accumulation of cadmium by hairy-root cultures of Solanum nigrum. Biotechnol. Lett., 16(6):621–624. [doi:10.1007/BF00128611]

    Article  CAS  Google Scholar 

  • Maitani, T., Kubota, H., Sato, K., Takeda, M., Yoshihira, K., 1996. Induction of phytochelatin (class III metallothionein) and incorporation of copper in transformed hairy roots of Rubia tinctorum exposed to cadmium. J. Plant Physiol., 147:743–748.

    CAS  Google Scholar 

  • McKone, T.E., 1994. Uncertainty and variability in human exposures to soil contaminants through homegrown food: a Monte Carlo assessment. Risk Anal., 14(4):449–463. [doi:10.1111/j.1539-6924.1994.tb00263.x]

    Article  PubMed  CAS  Google Scholar 

  • Metzger, L., Fouchault, I., Glad, C., Prost, R., Tepfer, D., 1992. Estimation of cadmium availability using transformed roots. Plant Soil, 143(2):249–257. [doi:10.1007/BF00007880]

    Article  CAS  Google Scholar 

  • Miner, G.S., Gutierrez, R., King, L.D., 1997. Soil factors affecting plant concentration of cadmium, copper, and zinc on sludge-amended soils. J. Environ. Qual., 26(4):989–994.

    Article  CAS  Google Scholar 

  • Msaky, J.J., Calvert, R., 1990. Adsorption behavior of copper and zinc in soils: influence of pH on adsorption characteristics. Soil Sci., 150(2):513–522. [doi:10.1097/00010694-199008000-00004]

    Article  CAS  Google Scholar 

  • Nedelkoska, T.V., Doran, P.M., 2000. Hyperaccumulation of cadmium by hairy roots of Thlaspi caerulescens. Biotechnol. Bioeng., 67(5):607–615. [doi:10.1002/(SICI)1097-0290(20000305)67:5〈607::AID-BIT11〉3.0.CO;2-3]

    Article  PubMed  CAS  Google Scholar 

  • Ni, W.Z., Long, X.X., Yang, X.E., 2002. Studies on the criteria of cadmium pollution in growth media of vegetable crops based on the hygienic limit of cadmium in food. J. Plant Nutr., 25(5):957–968. [doi:10.1081/PLN-120003931]

    Article  CAS  Google Scholar 

  • Nriagu, J.O., 1989. A global assessment of natural sources of atmospheric trace metals. Nature, 338(6210):47–49. [doi:10.1038/338047a0]

    Article  CAS  Google Scholar 

  • Pollard, A.J., Baker, A.J.M., 1996. Quantitative genetics of zinc hyperaccumulation in Thlaspi caerulescens. N. Phytol., 132(1):113–118. [doi:10.1111/j.1469-8137.1996.tb04515.x]

    Article  CAS  Google Scholar 

  • Reilly, C., 1991. Metal Contamination of Food, 2nd Ed. Elsevier Applied Science, London.

    Google Scholar 

  • Robinson, B.H., Chiarucci, A., Brooks, R.R., Petit, D., Kirkman, J.H., Gregg, P.E.H., de Dominicis, V., 1997a. The nickel hyperaccumulator plant Alyssum bertolonii as a potential agent for phytoremediation and phytomining of nickel. J. Geochem. Explor., 59(2):75–86. [doi:10.1016/S0375-6742(97)00010-1]

    Article  CAS  Google Scholar 

  • Robinson, B.H., Brooks, R.R., Howes, A.W., Kirkman, J.H., Gregg, P.E.H., 1997b. The potential of the high-biomass nickel hyperaccumulator Berkheya coddii for phytoremediation and phytomining. J. Geochem. Explor., 60(2):115–126. [doi:10.1016/S0375-6742(97)00036-8]

    Article  CAS  Google Scholar 

  • Ruby, M.V., Schoof, R., Brattin, W., Goldade, M., Post, G., Harnois, M., Mosby, D.E., Casteel, S.W., Berti, W., Carpenter, M., et al., 1999. Advances in evaluating the oral bioavailability of inorganics in soil for use in human risk assessment. Environ. Sci. Technol., 33(21):3697–3705. [doi:10.1021/es990479z]

    Article  CAS  Google Scholar 

  • Sagner, S., Kneer, R., Wanner, G., Cosson, J.P., Deus-Neumann, B., Zenk, M.H., 1998. Hyperaccumulation, complexation and distribution of nickel in Sebertia acuminata. Phytochemistry, 47(3):339–347. [doi:10.1016/S0031-9422(97)00593-1]

    Article  PubMed  CAS  Google Scholar 

  • Salgueiro, M.J., Zubillaga, M., Lysionek, A., Sarabia, M.I., Caro, R., Paoli, T.D., Hager, A., Weill, R., Boccio, J., 2000. Zinc as an essential micronutrient: a review. Nutr. Res., 20(5):737–755. [doi:10.1016/S0271-5317(00)00163-9]

    Article  CAS  Google Scholar 

  • Salt, D.E., Smith, R.D., Raskin, I., 1998. Phytoremediation. Annu. Rev. Plant Physiol. Plant Mol. Biol., 49(1):643–668. [doi:10.1146/annurev.arplant.49.1.643]

    Article  PubMed  CAS  Google Scholar 

  • Sánchez-Camazano, M., Sánchez-Martín, M.J., Lorenzo, L.F., 1994. Lead and cadmium in soils and vegetables from urban gardens of Salamanca (Spain). Sci. Total Environ., 146/147:163–168. [doi:10.1016/0048-9697(94)90233-X]

    Article  Google Scholar 

  • Shen, Z.G., Zhao, F.J., McGrath, S.P., 1997. Uptake and transport of zinc in the hyperaccumulator Thlaspi caerulescens and the non-hyperaccumulator Thlaspi ochroleucum. Plant Cell Environ., 20(7):898–906. [doi:10.1046/j.1365-3040.1997.d01-134.x]

    Article  CAS  Google Scholar 

  • Shuman, L.M., 1991. Chemical Forms of Micronutrient in Soils. In: Micronutrient in Agriculture, 2nd Ed. SSSA Book Series, Soil Science Society of America, Madison WI, p.113–144.

    Google Scholar 

  • Song, J., 2002. Assessment of Phytoavailability of Soil Metals and Phytoremediation of Soils Contaminated with Copper. PhD Thesis, Graduate School of Chinese Acacdemy of Sciences, China (in Chinese).

    Google Scholar 

  • Sterrett, S.B., Chaney, R.L., Gifford, C.H., Meilke, H.W., 1996. Influence of fertilizer and sewage sludge compost on yield of heavy metal accumulation by lettuce grown in urban soils. Environ. Geochem. Health, 18(4):135–142. [doi:10.1007/BF01771236]

    Article  Google Scholar 

  • Thompson, H.C., Kelly, W.C., 1990. Vegetable Crops, 5th Ed. MacGraw Hill Publishing Company Ltd., New Delhi.

    Google Scholar 

  • Tolrà, R.P., Poschenrieder, C., Barceló, J., 1996a. Zinc hyperaccumulation in Thlaspi caerulescens. I. Influence on growth and mineral nutrition. J. Plant Nutr., 19(12):1531–1540.

    Google Scholar 

  • Tolrà, R.P., Poschenrieder, C., Barceló, J., 1996b. Zinc hyperaccumulation in Thlaspi caerulescens. II. Influence on organic acids. J. Plant Nutr., 19(12):1541–1550.

    Article  Google Scholar 

  • Türkdogan, M.K., Kilicel, F., Kara, K., Tuncer, I., Uygan, I., 2003. Heavy metals in soil, vegetables and fruit in the endemic upper gastrointestinal cancer region of Turkey. Environ. Toxicol. Pharmacol., 13(3):175–179. [doi:10.1016/S1382-6689(02)00156-4]

    Article  CAS  Google Scholar 

  • van Lune, P., 1987. Cadmium and lead in soils and crops from allotment gardens in the Netherlands. Neth. J. Agric. Sci., 35:207–210.

    Google Scholar 

  • Vázquez, M.D., Barceló, J., Poschenrieder, C., Mádico, J., Hatton, P., Baker, A.J.M., Cope, G.H., 1992. Localization of zinc and cadmium in Thlaspi caerulescens (Brassicaceae), a metallophyte than can hyperaccumulate both metals. J. Plant Physiol., 140(3):350–355.

    Google Scholar 

  • Wierzbicka, M., 1995. How lead loses its toxicity to plants. Acta Soc. Bot. Pol., 64:81–90.

    Google Scholar 

  • Wong, J.W.C., 1996. Heavy metal contents in vegetables and market garden soils in Hong Kong. Environ. Technol., 17(4):407–414.

    Article  CAS  Google Scholar 

  • Xiong, Z.T., Wang, H., 2005. Copper toxicity and bioaccumulation in Chinese cabbage (Brassica pekinensis Rupr.). Environ. Toxicol., 20(2):188–194. [doi:10.1002/tox.20094]

    Article  PubMed  CAS  Google Scholar 

  • Yang, Z.Y., Zhang, F.S., 1993. The lead of soil-plant systems. Progress in Soil Science, 21(5):1–10 (in Chinese).

    Google Scholar 

  • Yang, X.E., Long, X.X., Ni, W.Z., Ye, Z.Q., He, Z.L., Stoffella, P.J., Calvert, D.V., 2002. Assessing copper thresholds for phytotoxicity and potential dietary toxicity in selected vegetables crops. J. Environ. Sci. Health, B37(6):625–635.

    CAS  Google Scholar 

  • Zhang, K.S., Zhou, Q.X., 2005. Toxic effects of Al-based coagulants on Brassica chinensis and Raphanus sativus growing in acid and neutral conditions. Environ. Toxicol., 20(2):179–187. [doi:10.1002/tox.20093]

    Article  PubMed  CAS  Google Scholar 

  • Zurera-Cosano, G., Moreno-Rojas, R., Salmeron-Egea, J., Pozo Lora, R., 1989. Heavy metal uptake from greenhouse border soils for edible vegetables. J. Sci. Food Agric., 49(3):307–314. [doi:10.1002/jsfa.2740490307]

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yang Xiao-e.

Additional information

Project supported by the Science and Technology Ministry of China (No. 2002CB410804) and the Education Ministry of China (No. IRT0536)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Islam, E.u., Yang, Xe., He, Zl. et al. Assessing potential dietary toxicity of heavy metals in selected vegetables and food crops. J. Zhejiang Univ. - Sci. B 8, 1–13 (2007). https://doi.org/10.1631/jzus.2007.B0001

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1631/jzus.2007.B0001

Key words

CLC number

Navigation