Skip to main content
Log in

Free vibration of pre-tensioned nanobeams based on nonlocal stress theory

  • Published:
Journal of Zhejiang University-SCIENCE A Aims and scope Submit manuscript

Abstract

The transverse free vibration of nanobeams subjected to an initial axial tension based on nonlocal stress theory is presented. It considers the effects of nonlocal stress field on the natural frequencies and vibration modes. The effects of a small scale parameter at molecular level unavailable in classical macro-beams are investigated for three different types of boundary conditions: simple supports, clamped supports and elastically-constrained supports. Analytical solutions for transverse deformation and vibration modes are derived. Through numerical examples, effects of the dimensionless nanoscale parameter and pre-tension on natural frequencies are presented and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Benzair, A., Tounsi, A., Besseghier, A., Heireche, H., Moulay, N., Boumia, L., 2008. The thermal effect on vibration of single-walled carbon nanotubes using nonlocal Timoshenko beam theory. Journal of Physics D: Applied Physics, 41(22):225404. [doi:10.1088/0022-3727/41/22/225404]

    Article  Google Scholar 

  • Chen, L.Q., Wu, J., 2005. Bifurcation in transverse vibration of axially accelerating viscoelastic strings. Acta Mechanica Solida Sinica, 26(1):83–86.

    Google Scholar 

  • Eringen, A.C., 1972. Nonlocal polar elastic continua. International Journal of Engineering Science, 10(1):1–16. [doi:10.1016/0020-7225(72)90070-5]

    Article  MathSciNet  MATH  Google Scholar 

  • Eringen, A.C., 1983. On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves. Journal of Applied Physics, 54(9):4703–4710. [doi:10.1063/1.332803]

    Article  Google Scholar 

  • Eringen, A.C., 2002. Nonlocal Continuum Field Theories. Springer-Verlag, New York, USA, p.285–316.

    MATH  Google Scholar 

  • Eringen, A.C., Edelen, D.G.B., 1972. On nonlocal elasticity. International Journal of Engineering Science, 10(3):233–248. [doi:10.1016/0020-7225(72)90039-0]

    Article  MathSciNet  MATH  Google Scholar 

  • Fung, Y.C., 1965. Foundations of Solid Mechanics. Prentice-Hall, Englewood Cliffs, NJ, USA, p.305–359.

    Google Scholar 

  • Kumar, D., Heinrich, C., Wass, A.M., 2008. Buckling analysis of carbon nanotubes modeled using nonlocal continuum theories. Journal of Applied Physics, 103(7):073521. [doi:10.1063/1.2901201]

    Article  Google Scholar 

  • Lim, C.W., Wang, C.M., 2007. Exact variational nonlocal stress modeling with asymptotic higher-order strain gradients for nanobeams. Journal of Applied Physics, 101(5):054312. [doi:10.1063/1.2435878]

    Article  MathSciNet  Google Scholar 

  • Liu, Y.Q., Zhang, W., 2007. Transverse nonlinear dynamical characteristic of viscoelastic belt. Journal of Beijing University of Technology, 33(11):10–13.

    Google Scholar 

  • Lu, P., Lee, H.P., Lu, C., Zhang, P.Q., 2006. Dynamic properties of flexural beams using a nonlocal elasticity model. Journal of Applied Physics, 99(7):073510. [doi:10.1063/1.2189213]

    Article  Google Scholar 

  • Mote, C.D.Jr., 1965. A study of band saw vibrations. Journal of the Franklin Institute, 279(6):430–444. [doi:10.1016/0016-0032(65)90273-5]

    Article  Google Scholar 

  • Mote, C.D.Jr., Naguleswaran, S., 1966. Theoretical and experimental band saw vibrations. ASME Journal of Engineering Industry, 88(2):151–156.

    Article  Google Scholar 

  • Oz, H.R., Pakdemirli, M., Boyaci, H., 2001. Non-linear vibrations and stability of an axially moving beam with time-dependent velocity. International Journal of Non-Linear Mechanics, 36(1):107–115. [doi:10.1016/S0020-7462(99)00090-6]

    Article  MATH  Google Scholar 

  • Peddieson, J., Buchanan, G.R., McNitt, R.P., 2003. Application of nonlocal continuum models to nanotechnology. International Journal of Engineering Science, 41(3–5): 305–312. [doi:10.1016/S0020-7225(02)00210-0]

    Article  Google Scholar 

  • Reddy, J.N., Wang, C.M., 1998. Deflection relationships between classical and third-order plate theories. Acta Mechanica Sinica, 130(3):199–208.

    Article  MathSciNet  MATH  Google Scholar 

  • Simpson, A., 1973. Transverse modes and frequencies of beams translating between fixed end supports. Journal of Mechanical Engineering Science, 15(3):159–164. [doi:10.1243/JMES_JOUR_1973_015_031_02]

    Article  Google Scholar 

  • Tounsi, A., Heireche, H., Berrabah, H.M., Benzair, A., Boumia, L., 2008. Effect of small size on wave propagation in double-walled carbon nanotubes under temperature field. Journal of Applied Physics, 104(10):104301. [doi:10.1063/1.3018330]

    Article  Google Scholar 

  • Wang, C.M., Duan, W.H., 2008. Free vibration of nanorings/arches based on nonlocal elasticity. Journal of Applied Physics, 104(1):014303. [doi:10.1063/1.2951642]

    Article  Google Scholar 

  • Wang, C.M., Zhang, Y.Y., Ramesh, S.S., Kitipornchai, S., 2006. Buckling analysis of micro- and nano-rods/tubes based on nonlocal Timoshenko beam theory. Journal of Applied Physics, 39(17):3904–3909. [doi:10.1088/0022-3727/39/17/029]

    Google Scholar 

  • Wang, C.M., Kitipornchai, S., Lim, C.W., Eisenberger, M., 2008. Beam bending solutions based on nonlocal Timoshenko beam theory. Journal of Engineering Mechanics, ASCE, 134(6):475–481. [doi:10.1061/(ASCE)0733-9399(2008)134:6(475)]

    Article  Google Scholar 

  • Wang, Q., 2005. Wave propagation in carbon nanotubes via nonlocal continuum mechanics. Journal of Applied Physics, 98(12):124301. [doi:10.1063/1.2141648]

    Article  Google Scholar 

  • Wang, Q., Varadan, V.K., 2006. Vibration of carbon nanotubes studied using nonlocal continuum mechanics. Smart Materials and Structures, 15(2):659–666. [doi:10.1088/0964-1726/15/2/050]

    Article  Google Scholar 

  • Xie, G.M., 2007. Vibration Mechanics. National Defense Industry Press, Beijing, China, p.198–203 (in Chinese).

    Google Scholar 

  • Xu, M.T., 2006. Free transverse vibrations of nano-to-micron scale beams. Proceedings of the Royal Society A: Mathematical Physical and Engineering Sciences, 462(2074):2977–2995. [doi:10.1098/rspa.2006.1712]

    Article  MathSciNet  MATH  Google Scholar 

  • Yang, X.D., Chen, L.Q., 2005. Dynamic stability of axially moving viscoelastic beams with pulsating speed. Applied Mathematics and Mechanics, 26(8):905–910.

    MATH  Google Scholar 

  • Yang, X.D., Lim, C.W., 2008. Nonlinear Vibrations of Nano-beams Accounting for Nonlocal Effect. Fourth Jiangsu-Hong Kong Forum on Mechanics and Its Application, Suzhou, China. Jiangsu Society of Mechanics, Nanjing, p.16–17.

    Google Scholar 

  • Zhang, Y.Q., Liu, G.R., Wang, J.S., 2004. Small-scale effects on buckling of multiwalled carbon nanotubes under axial compression. Physical Review B, 70(20):205430. [doi:10.1103/PhysRevB.70.205430]

    Article  Google Scholar 

  • Zhang, Y.Q., Liu, G.R., Xie, X.Y., 2005. Free transverse vibrations of double-walled carbon nanotubes using a theory of nonlocal elasticity. Physical Review B, 71(19): 195404. [doi:10.1103/PhysRevB.71.195404]

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. W. Lim.

Additional information

Project supported by the Collaboration Scheme from University of Science and Technology of China and City University of Hong Kong Joint Advanced Research Institute, and City University of Hong Kong (No. 7002357 (BC))

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lim, C.W., Li, C. & Yu, Jl. Free vibration of pre-tensioned nanobeams based on nonlocal stress theory. J. Zhejiang Univ. Sci. A 11, 34–42 (2010). https://doi.org/10.1631/jzus.A0900048

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1631/jzus.A0900048

Key words

CLC number

Navigation