Skip to main content
Log in

Phytoremediation of heavy metal polluted soils and water: Progresses and perspectives

  • Review
  • Published:
Journal of Zhejiang University SCIENCE B Aims and scope Submit manuscript

Abstract

Environmental pollution affects the quality of pedosphere, hydrosphere, atmosphere, lithosphere and biosphere. Great efforts have been made in the last two decades to reduce pollution sources and remedy the polluted soil and water resources. Phytoremediation, being more cost-effective and fewer side effects than physical and chemical approaches, has gained increasing popularity in both academic and practical circles. More than 400 plant species have been identified to have potential for soil and water remediation. Among them, Thlaspi, Brassica, Sedum alfredii H., and Arabidopsis species have been mostly studied. It is also expected that recent advances in biotechnology will play a promising role in the development of new hyperaccumulators by transferring metal hyperaccumulating genes from low biomass wild species to the higher biomass producing cultivated species in the times to come. This paper attempted to provide a brief review on recent progresses in research and practical applications of phytoremediation for soil and water resources.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alloway, B.J., 1995. Heavy Metals in Soils. Blackie Academic & Professional, London.

    Google Scholar 

  • Baker, A.J.M., McGrath, S.P., Reeves, R.D., Smith, J.C.A., 2000. Metal Hyperaccumulator Plants: A Review of the Ecology and Physiology of a Biological Resource for Phytoremediation of Metal-Polluted Soils. In: Terry, N., Banuelos, G. (Eds.), Phytoremediation of Contaminated Soil and Water. Lewis Publishers, Boca Raton, p.85–108.

    Google Scholar 

  • Brooks, R.R., 1998. Plants that Hyperaccumulate Heavy Metals. CAN International, Wallington, p.379.

    Google Scholar 

  • Brown, S.L., Chaney, R.L., Scott Angle, J., 1995. Zinc and cadmium uptake by hyperaccumulator thlaspi-caerulescens grown in nutrient solution. Soil Sci. Soc. Am. J., 59(1): 125–133.

    Article  CAS  Google Scholar 

  • Caille, B., Vauleon, C., Leyval, C., 2005. Metal transfer to plants grown on a dredged sediment: Use of radioactive isotope Hg-203 and titanium. Sci. Total Environ., 341(1–3):227–239. [doi:10.1016/j.scitotenv.2004.09.020]

    PubMed  CAS  Google Scholar 

  • Chaney, R.L., Malik, M., Li, Y.M., Brown, S.L., Brewer, E.P., Scott Angle, J., Baker, A.J.M., 1997. Phytoremediation of soil metals. Curr. Opin. Biotechnol., 8(3):279–284. [doi:10.1016/S0958-1669(97)80004-3]

    Article  PubMed  CAS  Google Scholar 

  • Cosio, C., Martinoia, E., Keller, C., 2004. Hyperaccumulaton of cadium and zinc in Thlaspi caerulescens and Arabidopsis hallri at leaf cellular level. Plant Physiol, 134(2): 716–725. [doi:10.1104/pp.103.031948]

    Article  PubMed  CAS  Google Scholar 

  • Cunningham, S.C., Berti, W.R., 2000. Phytoextraction and Phytostabilization: Technical, Economic, and Regulatory Considerations of the Soil-Lead Issue. In: Terry, N., Banuelos, G. (Eds.), Phytoremediation of Contaminated Soil and Water. Lewis Publishers, Boca Raton, Florida, USA, p.359–376.

    Google Scholar 

  • Dos Santos, M.C., Lenzi, E., 2000. The use of aquatic macrophytes (Eichhornia crassipes) as a biological filter in the treatment of lead contaminated effluents. Environ. Technol., 21(6):615–622.

    Google Scholar 

  • Ebbs, S.D., Lasat, M.M., Brady, D.J., Cornish, J., Gordon, R., Kochian, I.V., 1997. Phytoextraction of cadmium and zinc from a contaminated soil. J. Environ. Qual., 26(5): 1424–1430.

    CAS  Google Scholar 

  • Escarre, J., Lefebvre, C., Gruber, W., 2000. Zinc and cadmium hyperaccumulation by Thlaspi caerulescens from metalliferous and nonmetalliferous sites in the Mediterranean area: Implications for phytoremediation. New Phytologist, 145(3):429–437. [doi:10.1046/j.1469-8137.2000.00599.x]

    Article  CAS  Google Scholar 

  • Frey, B., Keller, C., Zierold, K., 2000. Distribution of Zn in functionally different leaf epidermal cells of the hyperaccumulator Thlaspi caerulescens. Plant Cell Environ., 23(7):675–687. [doi:10.1046/j.1365-3040.2000.00590.x]

    Article  CAS  Google Scholar 

  • Gade, L.H., 2000. Highly polar metal—Metal bonds in “early-late” heterodimetallic complexes. Angewandte Chemie-International Edition, 39(15):2658–2678. [doi:10.1002/1521-3773(20000804)39:15〈2658::AID-ANIE2658〉3.0.CO;2-C]

    Article  CAS  Google Scholar 

  • Garbisu, C., Alkorta, I., 2001. Phytoextraction: A cost effective plant-based technology for the removal of metals from the environment. Biores. Technol., 77(3):229–236. [doi:10.1016/S0960-8524(00)00108-5]

    Article  CAS  Google Scholar 

  • Giller, K.E., Witter, E., McGrath, S.P., 1998. Toxicity of heavy metals to microorganism and microbial processes in agricultural soils: A review. Soil Biol. Bichem., 30(10–11):1389–1414. [doi:10.1016/S0038-0717(97)00270-8]

    Article  CAS  Google Scholar 

  • Gisbert, C., Ros, R., de Haro, A., Walker, D.J., Pilar Bernal, M., Serrano, R., Avino, J.N., 2003. A plant genetically modified that accumulates Pb is especially promising for phytoremediation. Biochem. Biophys. Res. Commun., 303(2):440–445. [doi:10.1016/S0006-291X(03)00349-8]

    Article  PubMed  CAS  Google Scholar 

  • Gove, B., Hutchison, J.J., Young, S.D., Craigen, J., McGrath, S.P., 2002. Uptake of metals by plants sharing a rhizosphere with the hyperaccumulation Thlaspi caerulescences. Int. J. Phytoremediation, 4(4):267–281. [doi:10.1080/15226510208500087]

    Article  CAS  Google Scholar 

  • Ingole, N.W., Bhole, A.G., 2003. Removal of heavy metals from aqueous solution by water hyacinth (Eichhornia crassipes). J. Water Supply Res. Technol.-AQUA, 52(2): 119–128.

    Google Scholar 

  • Kabata-Pendias, A., 2001. Trace Elements in Soils and Plants, 3rd Ed. CRC Press, Boca Raton, Florida.

    Google Scholar 

  • Kidd, P.S., Monterroso, C., 2005. Metal extraction by Alyssum serpyllifolium ssp. lusitanicum on mine-spoil soils from Spain. Sci. Total Environ., 336(1–3):1–11. [doi:10.1016/j.scitotenv.2004.06.003]

    PubMed  CAS  Google Scholar 

  • Knox, A.S., Gamerdinger, A.P., Adriano, D.C., Kolka, R.K., Kaplan, D.I., 1999. Sources and Practices Contributing to Soil Contamination. In: Adriano, D.C., Bollag, J.M., Frankenberg, W.T.Jr, Sims, R.C. (Eds.), Bioremediation of the Contaminated Soils. Agronomy Series No. 37, ASA, CSSA, SSSA, Madison, Wisconson, USA, p.53–87.

    Google Scholar 

  • Kozdrój, J., van Elsas, J.D., 2001. Structural diversity of microbial communities in arable soils of a heavily industrialized area determined by PCR-DGGE finger printing and FAME profiling. Appl. Soil Ecol., 17(1):31–42. [doi:10.1016/S0929-1393(00)00130-X]

    Article  Google Scholar 

  • Kupper, H., Lombi, E., Zhao, F.J., 2000. Cellular compartmentation of cadmium and zinc in relation to other elements in the hyperaccumulator Arabidopsis halleri. Planta, 212(1):75–84. [doi:10.1007/s004250000366]

    Article  PubMed  CAS  Google Scholar 

  • Kupper, H., Lombi, E., Zhao, F.J., Wieshammer, G., McGrath, S.P., 2001. Cellular compartmentation of nickel in the hyperaccumulators Alyssum lesbiacum, Alyssum bertolonii and Tulips goesingense. J. Exp. Bot., 52(365): 2291–2300. [doi:10.1093/jexbot/52.365.2291]

    Article  PubMed  CAS  Google Scholar 

  • Kurek, E., Bollag, J.M., 2004. Microbial immobilization of cadmium released from CdO in the soil. Biogeochemistry, 69(2):227–239. [doi:10.1023/B:BIOG.0000031046.40036.df]

    Article  CAS  Google Scholar 

  • Landberg, T., Greger, M., 1996. Differences in uptake and tolerance to heavy metals in Salix from unpolluted and polluted areas. Applied Geochem., 11(1–2):175–180. [doi:10.1016/0883-2927(95)00082-8]

    Article  CAS  Google Scholar 

  • Li, H., Cheng, F., Wang, A., Wu, T., 2005. Cadmium Removal from Water by Hydrophytes and Its Toxic Effects. Proc. of the International Symposium of Phytoremediation and Ecosystem Health. Sept. 10–13, 2005, Hangzhou, China.

  • Li, T.Q., Yang, X.E., He, Z.L., Yang, J.Y., 2005a. Root morphology and Zn2+ uptake kinetics of the Zn hyperaccumulator of Sedum alfredii Hance. J. Integr. Plant Biol., 47(8):927–934. [doi:10.1111/j.1744-7909.2005.00117.x]

    Article  CAS  Google Scholar 

  • Li, T.Q., Yang, X.E., Jin, X.F., He, Z.L., Stoffella, P.J., Hu, Q.H., 2005b. Root response and metal accumulation in two contrasting ecotypes of Sedium alfredii Hance under lead and zinc stress. J. Environ. Sci. Health, 40(5): 1081–1096. [doi:10.1081/ESE-200056163]

    Article  CAS  Google Scholar 

  • Lindqvist, O., 1991. Mercury in the Swedish environment. Water Air Soil Bull., 55(1):23–32.

    Google Scholar 

  • Liu, Y., 2006. Shrinking Arable Lands Jeopardizing China’s Food Security. http://www.worldwatch.org/node/3912

  • Liu, X.M., Wu, Q.T., Banks, M.K., 2005. Effect of simultaneous establishment of Sedum alfridii and Zea mays on heavy metal accumulation in plants. Int. J. Phytoremediation, 7(1):43–53. [doi:10.1080/16226510590915800]

    Article  PubMed  CAS  Google Scholar 

  • Lombi, E., Zhao, F.J., Dunham, S.J., 2000. Cadmium accumulation in populations of Thlaspi caerulescens and Thlaspi goesingense. New Phytologist, 145(1):11–20. [doi:10.1046/j.1469-8137.2000.00560.x]

    Article  CAS  Google Scholar 

  • Ma, L.Q., Komar, K.M., Tu, C., Zhang, W., Cai, Y., Kennely, E.D., 2001. A fern that hyperaccumulates arsenic. Nature, 409(6820):579. [doi:10.1038/35054664]

    Article  PubMed  CAS  Google Scholar 

  • McGrath, S.P., Zhao, F.J., Lombi, E., 2001. Plant and rhizosphere process involved in phytoremediation of metal-contaminated soils. Plant Soil, 232(1/2):207–214. [doi:10.1023/A:1010358708525]

    Article  CAS  Google Scholar 

  • McKeehan, P., 2000. Brownfields: The Financial, Legislative and Social Aspects of the Redevelopment of Contaminated Commercial and Industrial Properties. http://md3.csa.com/discoveryguide/brown/overview.php?SID=05c43ivvp4r0detrha3d9r5g

  • Nriagu, J.O., 1994. Arsenic in the Environment. 1. Cycling and Characterization. John Wiley and Sons, New York.

    Google Scholar 

  • Nriagu, J.O., Pacyna, J.M., 1988. Quantitative assessment of worldwide contamination of air water and soils by trace metals. Nature, 333(6169):134–139. [doi:10.1038/333134a0]

    Article  PubMed  CAS  Google Scholar 

  • Pollard, A.J., Powell, K.D., Harper, F.A., Smith, J.A.C., 2002. The genetic basis of metal hyperaccumulation in plants. Crit. Rev. Plant Sci., 21(6):539–566. [doi:10.1080/0735-260291044359]

    Article  CAS  Google Scholar 

  • Prasad, M.N.V., Freitas, H.M.D., 2003. Metal hyperaccumulation in plants—Biodiversity prospecting for phytoremediation technology. Electron. J. Biotechnol., 93(1):285–321.

    Google Scholar 

  • Puschenreiter, M., Wieczorek, S., Horak, O., Wenzel, W.W., 2003. Chemical Changes in the rhizospher of metal hyperaccumulator and excluder Thlaspi species. J. Plant Nutri Soil Sci., 166(5):579–584. [doi:10.1002/jpln.200321155]

    Article  CAS  Google Scholar 

  • Ragnarsdottir, K.V., Hawkins, D., 2005. Trace metals in soils and their relationship with scrapie occurrence. Geochimica et Cosmochimica Acta, 69(10):A196–A196.

    Google Scholar 

  • Raskin, I., Gleba, D., Smith, R., 1996. Using plant seedlings to remove heavy metals from water. Plant Physiol., 111(2): 552–552.

    Google Scholar 

  • Raskin, I., Smith, R.D., Salt, D.E., 1997. Phytoremediation of metals: Using plants to remove pollutants from the environment. Curr. Opin. Biotechnol., 8(2):221–226. [doi:10.1016/S0958-1669(97)80106-1]

    Article  PubMed  CAS  Google Scholar 

  • Reeves, R.D., 2003. Tropical hyperaccumulators of metals and their potential for phytoextraction. Plant Soil, 249(1): 57–65. [doi:10.1023/A:1022572517197]

    Article  CAS  Google Scholar 

  • Robinson, B.H., Leblanc, M., Petit, D., 1998. The potential of Thlaspi caerulescens for phytoremediation of contaminated soils. Plant Soil, 203(1):47–56. [doi:10.1023/A:1004328816645]

    Article  CAS  Google Scholar 

  • Salido, A.L., Hastly, K.L., Lim, J.M., Butcher, D.J., 2003. Phytoremediation of arsenic and lead in contaminated soils using Chinese brake ferns (Pteris vittata) and Indian mustard (Brassica juncea). Int. J. Phytoremediation, 5(2):89–103. [doi:10.1080/713610173]

    Article  PubMed  CAS  Google Scholar 

  • Salt, D.E., Blaylock, M., kumar, P.B.A.N., Dushenkov, V., Ensley, B.D., Chet, L., Raskin, L., 1995. Phytoremediation: A novel strategy for the removal of toxic metals from the environment using plants. Biotechnology, 13(2):468–474.

    PubMed  CAS  Google Scholar 

  • Salt, D.E., Smith, R.D., Raskin, L., 1998. Phytoremediation. Ann. Rev. Plant Phys. Plant Mol. Biol., 49(1):643–668. [doi:10.1146/annurev.arplant.49.1.643]

    Article  CAS  Google Scholar 

  • Sarret, G., Saumitou-Laprade, P., Bert, V., 2002. Forms of zinc accumulated in the hyperaccumulator Arabidopsis halleri. Plant Physiol., 130(4):1815–1826. [doi:10.1104/pp.007799]

    Article  PubMed  CAS  Google Scholar 

  • Schalscha, E., Ahumada, I., 1998. Heavy metals in rivers and soils of central chile. Water Sci. Technol., 37(8):251–255. [doi:10.1016/S0273-1223(98)00255-8]

    Article  Google Scholar 

  • Schmidt, U., 2003. Enhancing phytoremediation: The effect of chemical soil manipulation on mobility, plant accumulation, and leaching of heavy metals. J. Environ. Qual., 32: 1939–1954.

    PubMed  CAS  Google Scholar 

  • Schwartz, C., Echevarria, G., Morel, J.L., 2003. Phytoextraction of cadmium with Thlaspi caerulescens. Plant Soil, 249(1):27–35. [doi:10.1023/A:1022584220411]

    Article  CAS  Google Scholar 

  • Scott Angle, J., Baker, A.J.M., Whiting, S.N., Chaney, R.L., 2003. Soil moisture effect on uptake of metals by Thlaspi, Alyssum and Berkheya. Plant Soil, 256(1):325–332.

    Article  Google Scholar 

  • Seaward, M.R.D., Richardson, D.H.S., 1990. Atmospheric Sources of Metal Pollution and Effects on Vegetation. In: Shaw, A.J. (Ed.), Heavy Metal Tolerance in Plants: Evolutionary. Aspects, CRC Press, Florida, p.75–92.

    Google Scholar 

  • Sneller, F.E.C., van Heerwaarden, L.M., Schat, H., 2000. Toxicity, metal uptake, and accumulation of phytochelatins in silene vulgaris exposed to mixtures of cadmium and arsenate. Environ. Toxicol. Chem., 19(12):2982–2986. [doi:10.1897/1551-5028(2000)019〈2982:TMUAAO〉2.0.CO;2]

    Article  CAS  Google Scholar 

  • Uneo, D., Zhao, F.J., Ma, J.F., 2004a. Interaction between Cd and Zn in relation to their hyperacculation in Thlaspi caerulescens. Soil Sci. Plant Nutri., 50(4):591–597.

    Google Scholar 

  • Uneo, D., Zhao, F.J., Shen, R.F., Ma, J.F., 2004b. Cadmium and zinc accumulation by the hyperaccumulattor Thlaspi caerulescens from soils enriched with insoluble metal compounds. Soil Sci. Plant Nutr., 50(3–4):511–515.

    Google Scholar 

  • Walsh, P.R., Duce, R.A., Finishing, J.I., 1979. Consideration of the enrichment, sources, and flux of arsenic in the troposphere. J. Geophysical. Res., 84:1719–1726.

    Article  CAS  Google Scholar 

  • Wang, Q., Cui, Y., Dong, Y., 2002. Phytoremediation of polluted waters potential and prospects of wetland plants. Acta Biotechnol., 22(1–2):199–208. [doi:10.1002/1521-3846(200205)22:1/2〈199::AID-ABIO199〉3.0.CO;2-T]

    Article  CAS  Google Scholar 

  • Welch, R.M., Norvell, W.A., 1993. Growth and nutrient-uptake by barley (hordeum-vulgare l cv herta)—studies using an n-(2-ydroxyethyl) ethylenedinitrilotriacetic acid buffered nutrient solution technique. 2. Role of zinc in the uptake and root leakage of mineral nutrients. Plant Physiol., 101(2):627–631.

    PubMed  CAS  Google Scholar 

  • Wenzel, W.W., Bunkowski, M., Puschenreiter, M., Horak, O., 2002. Rhizosphere characteristics of indigenously growing nickel hyperaccumulator and excluder plants on serpentine soil. Environ. Poll., 123(1):131–138.

    Article  CAS  Google Scholar 

  • Whiting, N.S., Leake, R.J., McGrath, P.S., baker, M.J.A., 2000. Positive response to Zn and CD by roots of the Zn and Cd hyperaccumulator Thlaspi caerulescens. New Phytol., 145(2):199–210. [doi:10.1046/j.1469-8137.2000.00570.x]

    Article  CAS  Google Scholar 

  • Xiong, Y.H., Yang, X.E., Ye, Z.Q., He, Z.L., 2004. Characteristics of cadmium uptake and accumulation by two contrasting ecotypes of sedum alfredii hance. J. Environ. Sci. Health Part A, 39(11–12):2925–2940.

    CAS  Google Scholar 

  • Yang, X.E., Ye, H.B., Long, X.X., He, B., He, Z.L., Stoffella, P.J., Calvert, D.V., 2004. Uptake and accumulation of cadmium and Zinc by Sedum alfredii Hance at different Cd/Zn supply levels. J. Plant Nutr., 27(11):1963–1977. [doi:10.1081/PLN-200030082]

    Article  CAS  Google Scholar 

  • Yang, X.E., Li, T.Q., Yang, J.C., He, Z.L., Lu, L.L., Meng, F.H., 2006. Zinc compartmentation in root, transport into xylem, and absorption into leaf cells in the hyperaccumulating species of Sedum alfredii Hance. Planta, 224(1): 185–195. [doi:10.1007/s00425-005-0194-8]

    Article  PubMed  CAS  Google Scholar 

  • Zaranyika, M.F., Ndapwadza, T., 1995. Uptake of Ni, Zn, Fe, Co, Cr, Pb, Cu and Cd by water hyacinth (Eichhornia crassipes) in Mukuvisi and Manyame Rivers, Zimbabwe. J. Environ. Sci. Health Part A, 30(1):157–169.

    Google Scholar 

  • Zayed, A., Gowthaman, S., Terry, N., 1998. Phytoremediation of trace elements by wetland plants: 1. Duck weed. J. Environ. Qual., 27(3):715–721.

    CAS  Google Scholar 

  • Zhang, W.H., Cai, Y., Tu, C., Ma, L.Q., 2002. Arsenic speciation and distribution in an arsenic hyper accumulating plant. Sci. Total Environ., 300(1–3):167–177. [doi:10.1016/S0048-9697(02)00165-1]

    PubMed  CAS  Google Scholar 

  • Zhang, L., Tian, S., Ye, Z., Yang, X., Peng, H., 2005. The Efficiency of Heavy Metal Removal from Contaminated Water by Elsholtzia argi and Elsholtzia splendens. Proc. of the International Symposium of Phytoremediation and Ecosystem Health. Sept. 10–13, 2005, Hangzhou, China.

  • Zhao, F.J., Lombi, E., Breedon, T., 2000. Zinc hyperaccumulation and cellular distribution in Arabidopsis halleri. Plant Cell Environ., 23(5):507–514. [doi:10.1046/j.1365-3040.2000.00569.x]

    Article  CAS  Google Scholar 

  • Zhao, F.J., Dunham, S.J., McGrath, S.P., 2002. Arsenic hyper accumulation by different fern species. New Phytologist, 156(1):27–31. [doi:10.1046/j.1469-8137.2002.00493.x]

    Article  CAS  Google Scholar 

  • Zhu, Y.L., Zayed, A.M., Qian, J.H., De Souza, M., Terry, N., 1999. Phytoaccumulation of trace elements by wetland plants: II. Water hyacinth. J. Environ. Qual., 28(1):339–344.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhen-li He.

Additional information

Project supported by the Higher Education Commission, Government of Pakistan for the faculty training under the R & D Project “Strengthening Department of Soil Science and Soil and Water Conservation” at the University of Florida, USA, a grant from the St. Lucie River Water Initiative (SFWMD contract No. OT060162), USA, in part, and the Program for Changjiang Scholars and Innovative Research Team in University (No.IRT0536), China

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lone, M.I., He, Zl., Stoffella, P.J. et al. Phytoremediation of heavy metal polluted soils and water: Progresses and perspectives. J. Zhejiang Univ. Sci. B 9, 210–220 (2008). https://doi.org/10.1631/jzus.B0710633

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1631/jzus.B0710633

Key words

CLC number

Navigation