Skip to main content
Log in

Effects of intermittent negative pressure on osteogenesis in human bone marrow-derived stroma cells

  • Published:
Journal of Zhejiang University SCIENCE B Aims and scope Submit manuscript

Abstract

Objective

We investigated the effects of intermittent negative pressure on osteogenesis in human bone marrow-derived stroma cells (BMSCs) in vitro.

Methods

BMSCs were isolated from adult marrow donated by a hip osteoarthritis patient with prosthetic replacement and cultured in vitro. The third passage cells were divided into negative pressure treatment group and control group. The treatment group was induced by negative pressure intermittently (pressure: 50 kPa, 30 min/times, and twice daily). The control was cultured in conventional condition. The osteogenesis of BMSCs was examined by phase-contrast microscopy, the determination of alkaline phosphatase (ALP) activities, and the immunohistochemistry of collagen type I. The mRNA expressions of osteoprotegerin (OPG) and osteoprotegerin ligand (OPGL) in BMSCs were analyzed by real-time polymerase chain reaction (PCR)

Results

BMSCs showed a typical appearance of osteoblast after 2 weeks of induction by intermittent negative pressure, the activity of ALP increased significantly, and the expression of collagen type I was positive. In the treatment group, the mRNA expression of OPG increased significantly (P<0.05) and the mRNA expression of OPGL decreased significantly (P<0.05) after 2 weeks, compared with the control.

Conclusion

Intermittent negative pressure could promote osteogenesis in human BMSCs in vitro.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Banwell, P.E., Musgrave, M., 2004. Topical negative pressure therapy: mechanisms and indications. Int. Wound J., 1(2):95–106. [doi:10.1111/j.1742-4801.2004.00031.x]

    Article  PubMed  Google Scholar 

  • Brown, J.M., Wilson, W.R., 2004. Exploiting tumour hypoxia in cancer treatment. Nat. Rev. Cancer, 4(6):437–447. [doi:10.1038/nrc1367]

    Article  PubMed  CAS  Google Scholar 

  • DeFranzo, A.J., Argenta, L.C., Marks, M.W., Molnar, J.A., David, L.R., Webb, L.X., Ward, W.G., Teasdall, R.G., 2001. The use of vacuum-assisted closure therapy for the treatment of lower-extremity wounds with exposed bone. Plast. Reconstr. Surg., 108(5):1184–1191. [doi:10.1097/00006534-200110000-00013]

    Article  PubMed  CAS  Google Scholar 

  • Greer, S., Kasabian, A., Thorne, C., Borud, L., Sims, C.D., Hsu, M., 1998. The use of a subatmospheric pressure dressing to salvage a Gustilo grade IIIB open tibial fracture with concomitant osteomyelitis to avert a free flap. Ann. Plast. Surg., 41(6):687. [doi:10.1097/00000637-199812000-00022]

    Article  PubMed  CAS  Google Scholar 

  • Heller, L., Levin, S.L., Butler, C.E., 2006. Management of abdominal wound dehiscence using vacuum assisted closure in patients with compromised healing. Am. J. Surg., 191(2):165–172. [doi:10.1016/j.amjsurg.2005.09.003]

    Article  PubMed  Google Scholar 

  • Ichioka, S., Shibata, M., Kosaki, K., Sato, Y., Harii, K., Kamiya, A., 1997. Effects of shear stress on wound-healing angiogenesis in the rabbit ear chamber. J. Surg. Res., 72(1):29–35. [doi:10.1006/jsre.1997.5170]

    Article  PubMed  CAS  Google Scholar 

  • Kanakaris, N.K., Thanasas, C., Keramaris, N., Kontakis, G., Granick, M.S., Giannoudis, P.V., 2007. The efficacy of negative pressure wound therapy in the management of lower extremity trauma: review of clinical evidence. Injury, 38(5):8–17. [doi:10.1016/j.injury.2007.10.029]

    Article  Google Scholar 

  • Kim, C.H., You, L., Yellowley, C.E., Jacobs, C.R., 2006. Oscillatory fluid flow-induced shear stress decreases osteoclastogenesis through RANKL and OPG signaling. Bone, 39(5):1043–1047. [doi:10.1016/j.bone.2006.05.017]

    Article  PubMed  CAS  Google Scholar 

  • Lee, J.W., Bae, S.H., Jeong, J.W., Kim, S.H., Kim, K.W., 2004. Hypoxia-inducible factor (HIF-1) alpha: its protein stability and biological functions. Exp. Mol. Med., 36(1):1–12.

    PubMed  Google Scholar 

  • Lennon, D.P., Edmison, J.M., Caplan, A.I., 2001. Cultivation of rat marrow-derived mesenchymal stem cells in reduced oxygen tension: effects on in vitro and in vivo osteochondrogenesis. J. Cell. Physiol., 187(3):345–355. [doi:10.1002/jcp.1081]

    Article  PubMed  CAS  Google Scholar 

  • Loos, B., Kopp, J., Hohenberger, W., Horch, R.E., 2007. Post-malignancy irradiation ulcers with exposed alloplastic materials can be salvaged with topical negative pressure therapy (TNP). Eur. J. Surg. Oncol., 33(7):920–925. [doi:10.1016/j.ejso.2006.12.018]

    PubMed  CAS  Google Scholar 

  • Mauney, J.R., Sjostorm, S., Blumberg, J., Horan, R., O’Leary, J.P., Vunjak-Novakovic, G., Volloch, V., Kaplan, D.L., 2004. Mechanical stimulation promotes osteogenic differentiation of human bone marrow stromal cells on 3-D partially demineralized bone scaffolds in vitro. Calcif. Tissue Int., 74(5):458–468. [doi:10.1007/s00223-003-0104-7]

    Article  PubMed  CAS  Google Scholar 

  • Petrie, N., Potter, M., Banwell, P., 2003. The management of lower extremity wounds using topical negative pressure. Int. J. Lower Extrem. Wounds, 2(4):198–206. [doi:10.1177/1534734603261067]

    Article  CAS  Google Scholar 

  • Potter, M.J., Banwell, P., Baldwin, C., Clayton, E., Irvine, L., Linge, C., Grobbelaar, A.O., Sanders, R., Dye, J.F., 2008. In vitro optimisation of topical negative pressure regimens for angiogenesis into synthetic dermal replacements. Burns, 34(2):164–174. [doi:10.1016/j.burns.2007.06.020]

    Article  PubMed  Google Scholar 

  • Rubin, J., Murphy, T., Nanes, M.S., Fan, X., 2000. Mechanical strain inhibits expression of osteoclast differentiation factor by murine stromal cells. Am. J. Physiol.: Cell Physiol., 278(6):1126–1132.

    Google Scholar 

  • Shang, Q., Wang, Z., Liu, W., Shi, Y., Cui, L., Cao, Y., 2001. Tissue-engineered bone repair of sheep cranial defects with autologous bone marrow stromal cells. J. Craniofac. Surg., 12(6):586–593. [doi:10.1097/00001665-200111000-00017]

    Article  PubMed  CAS  Google Scholar 

  • Tang, L., Lin, Z., Li, Y.M., 2006. Effects of different magnitudes of mechanical strain on osteoblasts in vitro. Biochem. Biophys. Res. Commun., 344(1):122–128. [doi:10.1016/j.bbrc.2006.03.123]

    Article  PubMed  CAS  Google Scholar 

  • Thompson, J.T., Marks, M.W., 2007. Negative pressure wound therapy. Clin. Plast. Surg., 34(4):673–684. [doi:10.1016/j.cps.2007.07.005]

    Article  PubMed  Google Scholar 

  • Towler, D.A., 2007. Vascular biology and bone formation: hints from HIF. J. Clin. Invest., 117(6):1477–1480. [doi:10.1172/JCI32518]

    Article  PubMed  CAS  Google Scholar 

  • Wang, Y., Wan, C., Gilbert, S.R., Clemens, T.L., 2007. Oxygen sensing and osteogenesis. Ann. N. Y. Acad. Sci., 1117(1):1–11. [doi:10.1196/annals.1402.049]

    Article  PubMed  CAS  Google Scholar 

  • Wiesmann, A., Buhring, H.J., Mentrup, C., Wiesmann, H.P., 2006. Decreased CD90 expression in human mesenchymal stem cells by applying mechanical stimulation. Head Face Med., 2(1):8. [doi:10.1186/1746-160X-2-8]

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yin-gang Zhang.

Additional information

Project (No. 20070421123) supported by the Postdoctoral Science Foundation of China

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, Z., Liu, M., Zhang, Yg. et al. Effects of intermittent negative pressure on osteogenesis in human bone marrow-derived stroma cells. J. Zhejiang Univ. Sci. B 10, 188–192 (2009). https://doi.org/10.1631/jzus.B0820240

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1631/jzus.B0820240

Key words

CLC number

Navigation